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Resumo

Esta tese de doutorado é composta por três ensaios independentes sobre risco sistêmico e

economia bancária. O primeiro artigo busca mensurar risco bancário utilizando o modelo

estrutural de Merton (1974) e a métrica Z-Score para avaliar o impacto da regulação de

capital na probabilidade de falência (PD) bancária. Os resultados confirmam a importância

de medidas regulatórias como o acordo de Basileia III e destacam a necessidade de

requerimentos de capital otimizados para fortalecer a estabilidade financeira. O segundo

artigo estima diferentes medidas para entender a contribuição de cada banco para o risco

sistêmico do mercado brasileiro e propõe um modelo de corrida bancária que considera a

PD idiossincrática dos bancos e um processo de risco sistêmico no qual quebras adicionais

ocorrem através de diferentes canais de contágio. Por meio de nossa abordagem, estimamos

a distribuição de perdas, a PD do fundo garantidor de depósitos e um nível otimizado

de requerimento de capital para o sistema bancário brasileiro. Por fim, o terceiro artigo

propõe o procedimento de Estimativa Bootstrap com Seleção de Variáveis (BEVS) para

estimar os determinantes da PD no sistema bancário brasileiro. Neste método, combinamos

técnicas como regressão Lasso, Loess e bagging, mostrando que esta abordagem integrada

gera resultados superiores se comparado aos obtidos pelo desempenho individual de cada

técnica. Nossos resultados indicam que o BEVS não apenas refina a estimativa da PD,

mas também oferece uma visão mais abrangente do impacto dos fatores macroeconômicos

durante o período avaliado.

Palavras-chave: Risco Sistêmico; Corrida Bancária; Estabilidade Financeira; Fundo

Garantidor de Depósitos; Probabilidade de Falência; Instituições Financeiras; Requerimento

de Capital.



Abstract

This doctoral dissertation consists of three self-contained essays on systemic risk and

banking. The first paper examines bank risk using the structural model of Merton (1974)

and Z-Score to evaluate the impact of bank capital regulation on banks’ probability of

default (PD). The results confirm the importance of regulatory measures such as Basel

III and highlight the need for balanced capital requirements to enhance financial stability.

The second paper estimates different measures to understand how much systemic risk

each bank brings to the Brazilian market and proposes a bank run model that accounts

for idiosyncratic PD of banks and a systemic risk process in which additional defaults

occur through different channels of contagion. Through our approach, we estimate the loss

distribution, the PD of the deposit insurance agency, and an optimized capital adequacy

ratio for the Brazilian banking system. Lastly, the third paper proposes the Bootstrap

Estimator with Variable Selection (BEVS) procedure to estimate the determinants of

the PD in the Brazilian banking system. In this method, we combine techniques such as

Lasso regression, Loess smoothing, and bagging, showing that this integrated approach

yields improved results compared to those obtained through their individual performance.

Our findings indicate that BEVS not only refines the estimate of PD but also offers a

comprehensive view of the impact of macroeconomic factors over the study period.

Keywords: Systemic Risk; Bank Runs; Financial Stability; Deposit Insurance Agency;

Probability of Default; Financial Institutions; Capital Requirement.
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General Introduction

The recent Global Financial Crisis (GFC) has emphasized the importance of policies

that improve the overall stability of the financial system. This crisis served as one of

the clearest illustrations in history of systemic risk, in which banks and credit play a

particularly important role (De Bandt and Hartmann, 2019). Although the topic has

generated extensive literature and intense financial interest, many macroeconomists and

policymakers recognize a significant gap in understanding the channels of system-wide

risk and the contribution of systemic risk by individual financial institutions (FIs)1 to

the broader economy (Christiano et al., 2018; Fidrmuc and Lind, 2020). Furthermore,

the critical nature of this issue has generated a growing consensus among policymakers

to adopt a macroprudential approach to regulation and supervision, as it is considered

essential to ensure a resilient global financial system (Hannoun, 2010; Borio, 2011; Galati

and Moessner, 2013).

In broader terms, systemic risk refers to the risk of a financial crisis or market failure

that affects the stability of the financial system and has widespread effects on the economy

as a whole. This type of risk is of particular concern in financial systems due to the inter-

connectedness of financial institutions, which can amplify the effects of individual failures

and propagate shocks throughout the system as a negative domino effect (Brunnermeier

and Oehmke, 2013; Adrian and Brunnermeier, 2016).

Understanding how financial institutions affect systemic risk, whether through their

idiosyncratic characteristics or its connections with the rest of the economy, is fundamental

for effective action by central banks and policymakers in time of crisis. Furthermore,

identifying the factors that influence the probability of default (PD) of banks is important

1In this thesis, the terms "bank" and "financial institution" are used interchangeably, even though
banks can be viewed as a subset of the financial services sector. In this narrower sense, banks are
financial institutions that accept deposits into various savings and demand deposit accounts, a service that
non-banking financial institutions (such as investment banks, leasing companies, insurance companies,
investment funds, finance firms, and others) cannot offer. For more information, see Hagendorff (2019).
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for assessing and measuring the impact of regulatory policies on these metrics. Although

a substantial body of literature derives PD estimates based on stock market data, such

as prices, bonds, derivatives, and credit default swaps (Altman, 1968; Merton, 1974;

Lehar, 2005; Davydov et al., 2021; da Rosa München, 2022), these methods are primarily

applicable to listed banks. This creates significant difficulties for economies with fewer

publicly traded banks, as is often the case in several emerging markets. In that sense,

one of the pressing challenges in empirical banking literature is to create robust measures

based on publicly balance sheet data, which can be used for both listed and non-listed

banks (Souza et al., 2015; Guerra et al., 2016; Silva et al., 2016).

In Brazil, as in several other economies, non-listed banks constitute the majority of

the financial system and play an important role in supporting both retail and commercial

activities (BCB, 2022a). As of September 2022, only 24 (13.2%) of the Brazilian member

institutions covered by the private deposit insurance agency (DIA), Fundo Garantidor

de Créditos (FGC), are listed on the stock exchange. Considering that these institutions

account for 80% of total assets, one could argue that concentrating the analysis on these

listed banks would offer a reasonable representation in terms of total assets. On the other

hand, such a focus overlooks the broader spectrum of institutions and their interconnections

within the system. However, it is clear that the absence of market data for non-listed

banks amplifies the complexity of risk assessment and, consequently, the evaluation of

regulatory impacts on the banking system.

An extension of this challenge lies not just in the numerical distinction between non-

listed and listed institutions, but also in the different regulatory guidelines set forth by the

Central Bank of Brazil (BCB) based on the Basel III Accord (BCBS, 2011). Larger FIs,

which are typically the listed ones, are subject to a more stringent set of regulations due to

their substantial exposure size. In contrast, smaller banks, often non-listed, face a different

set of regulatory standards. Although there exists a large literature exploring Basel III’s

impact on banks’ balance sheets and its transmission to the real economy, especially since

the GFC, the topic continues to be a subject of active discussion and research. Despite

the broad consensus on the benefits of Basel III in enhancing financial stability, there

are unresolved questions about the effects on capital cost, banking lending, and banking

concentration, specifically regarding the trade-offs faced by regulators when establishing

regulatory frameworks.

12



This context sets the stage for the research and the questions addressed in this thesis,

which consists of three self-contained essays on systemic risk and banking. The database

of all Brazilian FIs and the method to estimate the probability of default are the common

factors for the three essays. Specifically, in Chapter 1 we examine bank risk using the

structural model of Merton (1974) and Z-Score, employing public balance sheet data to

evaluate the impact of bank capital regulation on banks’ probability of default. To achieve

this, we utilized the two-way fixed effects model and a difference-in-difference approach,

analyzing data from the Brazilian banking market from December 2000 to September 2022.

The results confirm the practical importance of regulatory measures such as Basel III and

highlight the need for balanced capital requirements to enhance financial stability.

In Chapter 2, we estimate different measures to understand how much systemic risk

each bank brings to the Brazilian market and proposed a bank run model that accounts for

idiosyncratic probability of default of banks and a systemic risk process in which additional

defaults occur through different channels of contagion. Our approach follows a similar

theoretical framework in which portfolio risk is calculated in banking organizations and in

which banking losses are estimated in deposit insurance schemes. Through the application

of our model to a reduced sample of 24 listed banks and a full sample of 182 covered banks

for September 2022, we estimate the loss distribution, the PD of the deposit insurance

agency, and the optimized capital adequacy ratio of the Brazilian banking system.

Lastly, in Chapter 3, we propose the Bootstrap Estimator with Variable Selection

(BEVS) procedure to estimate the determinants of the probability of default in the

Brazilian banking system over the period from December 2007 to September 2022. In this

method, we combine techniques such as Lasso regression, Loess smoothing, and bagging,

showing that this integrated approach yields improved results compared to those obtained

through their individual performance. Our findings indicate that BEVS not only refines

the estimate of PD but also offers a comprehensive view of the impact of macroeconomic

factors over the study period.

13



Chapter 1

Impact of Capital Regulation on

Banks’ Probability of Default

1.1 Introduction

Financial instability and crises are a recurrent, though infrequent, phenomenon in

history. Since the Global Financial Crisis, researchers and policymakers have dedicated a

great effort to understand the causes of such fragility and proposed strategies to mitigate

future downturns (De Bandt and Hartmann, 2019). One strategy that has gained significant

attention requires financial institutions to hold substantially more capital, which would

lead to a lower probability of default given the greater capacity to absorb losses (BCBS,

2011; Berger and Bouwman, 2013; Thakor, 2014; Van Der Weide and Zhang, 2019; BCBS,

2021).

Identifying the factors that influence the PD of banks is essential to properly evaluate

and measure the regulatory impact on these metrics. Although a substantial body

of literature derives PD estimates based on stock market data, such as prices, bonds,

derivatives, and credit default swaps (Altman, 1968; Merton, 1974; Lehar, 2005; Kato and

Hagendorff, 2010; Chiaramonte and Casu, 2013; Davydov et al., 2021; da Rosa München,

2022), these methods are primarily applicable to listed banks. This creates significant

difficulties for economies with fewer publicly traded banks, as is often the case in several

emerging markets. In that sense, one of the pressing challenges in empirical banking

literature is to create robust measures based on balance sheet data, which can be used for

both listed and non-listed banks (Souza et al., 2015; Guerra et al., 2016; Silva et al., 2016).

14



In Brazil, as in several other economies, non-listed banks constitute the majority of

the financial system and play an important role in supporting both retail and commercial

activities (BCB, 2022a). As of September 2022, only 24 (13.2%) of the Brazilian member

institutions covered by the private deposit insurance agency, Fundo Garantidor de Créditos,

are listed on the stock exchange. Considering that these institutions account for 80% of

total assets, one could argue that concentrating the analysis on these listed banks would

offer a reasonable representation in terms of total assets. On the other hand, such a

focus overlooks the broader spectrum of institutions and their interconnections within the

system. However, it is clear that the absence of market data for non-listed banks amplifies

the complexity of risk assessment and, consequently, the evaluation of regulatory impacts

on the banking system.

An extension of this challenge lies not just in the numerical distinction between non-

listed and listed institutions, but also in the different regulatory guidelines set forth by the

Central Bank of Brazil based on the Basel III Accord (BCBS, 2011). Larger FIs, which

are typically the listed ones, are subject to a more stringent set of regulations due to their

substantial exposure size. In contrast, smaller banks, often non-listed, face a different

set of regulatory standards. This differentiation is outlined in the CMN resolution no.

4.553/2017, segmenting banks from S1 to S5 based on their total exposures and defining

their respective rules1. This approach mirrors the principles emphasized by Tarullo (2019),

where the post-2008 US banking regulations, such as the Dodd-Frank Act, formulated

guidelines that corresponded to the size, risk profile, and systemic importance of banks.

While there are numerous studies assessing regulatory impacts on the Brazilian banking

system, to the best of our knowledge, there is a lack of research encompassing all financial

institutions using public data. To address this gap, we employed public balance sheet

data to estimate bank risk using the structural model of Merton (1974) and the Z-Score

(Souza et al., 2016). Furthermore, we evaluated the effect of bank capital regulation on a

bank’s probability of default. To achieve this, we utilized the two-way fixed effects and

1In accordance with Resolution CMN n.º 4.553/2017, the Central Bank of Brazil segments financial
institutions and other licensed entities into five categories: S1 includes universal banks, commercial banks,
investment banks, foreign exchange banks, and federal savings banks with a size equal to or exceeding 10%
of the GDP or those engaging in relevant international activity; S2 encompasses the same bank categories
as S1 but with a size less than 10% and equal to or exceeding 1% of the GDP, and other institutions with
a size equal to or exceeding 1% of the GDP; S3 is for institutions with a size below 1% but equal to or
exceeding 0.1% of the GDP; S4 consists of institutions with a size less than 0.1% of the GDP; and S5
includes institutions below 0.1% of the GDP that utilize a simplified optional methodology for determining
minimum equity requirements, excluding the banks listed in S1 and S2.
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the difference-in-difference model, analyzing the Brazilian banking market from December

2000 to September 2022.

The structure of this work consists of five sections. Following this introduction, Section

1.2 outlines the theoretical framework of all our analyzes to estimate the impact of capital

regulation on banks’ probability of default. Section 1.3 presents the data used in our

models. Section 1.4 offers our results and a discussion, while Section 1.5 concludes with

final remarks.

1.2 Theoretical Framework

This section presents the theoretical framework for estimating the probability of default

and Z-Score for each financial institution, including the application of an econometric

model used for inference.

1.2.1 Structural Model for Probability of Default

In this work, we utilize the structural model of Merton (1974) to estimate the idiosyn-

cratic PD for each financial institution2, which models credit risk using the Contingent

Claim Analysis3 (Souza et al., 2015, 2016; Guerra et al., 2016; Coccorese and Santucci,

2019; da Rosa München, 2022). It is a structural model because it establishes a relationship

between the debt and the value of the bank. The intuition of this approach is to consider

the bank’s assets as the underlying asset of a European call option, with a strike price

equal to its obligations and a time to maturity T . Thus, if the bank defaults, equity

holders receive nothing because the bank does not have enough resources to repay its

2There are works that utilize approaches such as CAMELS (Capital adequacy, Asset quality, Management,
Earnings, Liquidity, Sensitivity to market risk) to estimate the PD using balance sheet variables (Valahza-
ghard and Bahrami, 2013; Calabrese and Giudici, 2015; Rosa and Gartner, 2018; Parrado-Martínez et al.,
2019). Although this technique allows the utilization of more granular and specific bank variables, it
performs better when a large number of observable bank defaults are available for robust logit model
estimation, which is not the case for the Brazilian economy. Even with strategies to increase the default
variable, such as considering interventions by supervisors, capital below the minimum required, or mergers
motivated by financial difficulties (Vazquez and Federico, 2015), criteria that have an inherent subjective
aspect, we may still not reach a sufficient number of defaults in certain economies to estimate a robust
model.
3Contingent Claim Analysis (CCA) is a generalization of the option pricing theory presented in Black
and Scholes (1973) to analyze the corporate capital structure. A contingent claim is an asset whose future
payoff depends on the outcome of an uncertain event. Thus, CCA analyzes how the value of the contingent
claim changes as the value of the firm fluctuates over time. For a detailed examination, see Jobst and
Gray (2013).
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obligations. Otherwise, if it does not default, the equity holders receive the difference

between the values of assets and liabilities.

Although Merton (1974)’s model establishes that a default occurs when the bank’s

assets (granted loans) fall below its obligations (deposits received), in reality, operations

can continue with negative equity4. This is due to contract breach or liquidity scarcity

problems when the bank must sell assets or renegotiate debt (Guerra et al., 2016). To

address these concerns, the literature introduces a threshold called distress barrier (DB)

as a trigger for default, defined as a proportion of the debt’s face value. Specifically, the

bank defaults if its asset value drops below its DB. This threshold is calculated using

accounting data based on the KMV5 model, as given by equation 1.1 (Crosbie and Bohn,

2003).

DBit = STDit + αitLTDit (1.1)

In which STDit and LTDit stands for the sort-term (maturity ≤ 1 year) and long-term

(maturity greater than 1 year) liabilities, respectively. The parameter 0 ≤ αit ≤ 1 proxies

the share of a bank’s long-term liabilities subject to early redemption under stress. Due

to the unavailability of time to maturity data of total liabilities for the Brazilian case,

we follow Souza et al. (2016) and assume that they are predominantly short-term debts

(STDit = 0.7) with a significant long-term debt share (LTDit = 0.3). In general, the

literature suggests αit = 0.5 if LTDit/STDit < 1.5, resulting in DBit = 0.85TLit (Crosbie

and Bohn, 2003; Souza et al., 2015; Guerra et al., 2016; Coccorese and Santucci, 2019).

Using these definitions on the Black and Scholes (1973)’s model, the option’s payoff

for the equity holder at time T is given by 1.2.

Eit = max(Ait N (d1it) − DBit e−rtT N (d2it), 0) (1.2)

Where Ait is the value of assets, rt is the risk-free interest rate, N (.) is the cumulative

normal distribution function,

411 banks operated with negative equity in the Brazilian market between March 2000 and September
2022 (BCB, 2023a).
5Originally an acronym for its founders Kealhofer, McQuown, and Vasicek, KMV is known for its
development of a credit risk model that estimates a firm’s probability of default. KMV was acquired by
Moody’s Corporation in 2002, expanding Moody’s Analytics credit risk management product offerings.
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d1it =
ln( Ait

DBit
) + (rt + σ2

Ait

2 )T
σAit

√
T

and

d2it = d1it − σAit

√
T =

ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T

,

in which σAit denotes the volatility of assets.

The time to maturity T is assumed to be one-year and is in line with i) the usual

assets’ classification into short-term and long-term liabilities that are required by the

model, ii) the expected time for banks to adapt to capital increases, and iii) the stress

test exercises conducted by the regulatory authority (BCBS, 2010, 2011; O’Keefe and

Ufier, 2017). Following this approach, we were able to produce robust estimates of the

probability of default for each financial institution in the study.

To calculate each PDit, two important assumptions are made. The first is that the

bank’s asset values are log-normally distributed (Crouhy et al., 2000; Lehar, 2005; Guerra

et al., 2016; Souza et al., 2016; da Rosa München, 2022). The second is that investors

are risk-neutral, that is, the demanded rate of return is the risk-free rate of return rt,

which is lower than that required by risk-averse investors. This assumption results in

conservative (higher) PDit estimates. Thus, the idiosyncratic PDit of a FI in a time

horizon T , computed in t = 0, is given by 1.3.

PDit = P (DBit ≥ Ait)

= P (ln DBit ≥ ln Ait)

= N (−d2it)

= N

−
ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T


(1.3)

Note that the PDit is the area under the default barrier, i.e., a fraction of total liabilities.

Also, note that the negative of d2it can also be used to compute the distance to distress

for a risk-neutral environment, which is the distance between the bank’s asset value and

the distress barrier in t = 0, measured in assets value’ standard deviations.

18



1.2.2 Z-Score Model

In addition to employing the Merton (1974) model to estimate the probability of default

for each financial institution, we utilized the Z-Score as a robustness check. This score, an

adaptation of the indicator created by Altman (1968), is widely recognized as a measure of

bank stability and risk within the banking literature (Beck et al., 2013; Chiaramonte et al.,

2015; Rosa and Gartner, 2018; World Bank, 2020; Nguyen, 2021; Stewart and Chowdhury,

2021). It explicitly compares buffers (capitalization and returns) with risk (volatility of

returns) to measure a bank’s solvency risk. The specification, proposed by Boyd and

Runkle (1993), is given by 1.4.

Z-Scoreit = EAit + µ(ROAit)
σ(ROAit)

(1.4)

Where EAit represents the bank’s equity-to-assets ratio and ROAit denotes the historical

return on assets. In scenarios with uncertainty, one could consider EAit as deterministic and

model ROA as a stochastic variable with finite mean µ(ROAit) and variance σ(ROAit)26.

The Z-Score quantifies the number of standard deviations by which returns must fall from

the mean in order to net the bank equity. A higher Z-Score indicates increased bank

stability and a lower likelihood of insolvency risk.

For a specific case where ROA follows a normal distribution with mean µ(ROAit)

and standard deviation σ(ROA), the probability of insolvency P (ROA ≤ −EA), can be

determined as shows in Equation 1.5.

P (ROA ≤ −EA) = N

−EA − µ(ROA)
σ(ROA)

 = 1 − N

EA + µ(ROA)
σ(ROA)

 (1.5)

In which N (.) is the cumulative normal distribution function, and the second equality

holds because the normal distribution is symmetric (Mare et al., 2017).

While the Z-Score offers valuable insights, it presents certain limitations as a financial

stability measure. For instance, it may not detect short-term fluctuations in bank risk,

given that its variance is calculated using extended historical data. Moreover, since Z-

6Some works utilize ROAit point-in-time and a three-year rolling standard deviation to increase the
sensitivity and fluctuation of the Z-Score (Beck et al., 2013; Lepetit and Strobel, 2013; Chiaramonte et al.,
2015; Mare et al., 2017).
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Scores rely solely on accounting data, they are constrained by the quality of the underlying

accounting and auditing framework. If financial institutions manage to smooth out the

reported data, the Z-Score might offer an overly favorable assessment of their stability.

Nonetheless, an advantage of the Z-Score is its applicability to institutions lacking more

sophisticated market-based data (Lepetit and Strobel, 2013; Mare et al., 2017).

1.2.3 Empirical Strategy

The empirical strategy to estimate the impact of bank capital regulation on FI’s

PD employs the two-way fixed effects model. This framework allows controlling the

intrinsic characteristics of each FI and the influence of macroeconomic factors on the

probability of default over time, assuming linear additive effects for this case (Petersen,

2008; de Chaisemartin and D’Haultfœuille, 2020; Callaway and Sant’Anna, 2021; Baltagi,

2021; Imai and Kim, 2021; Davydov et al., 2021; Baker et al., 2022; Mateev et al., 2022;

Karolyi et al., 2023). For each estimated model, both PD and Z-Score are used as dependent

variables7.

Consider a balanced panel data set of N financial institutions and T time periods. Let

X it and Yit represent the vector of covariates and the observed outcome variable for an FI

i at time t, respectively. Then, the two-way fixed effects model is given by 1.6.

Yit = βX it + αi + γt + εit (1.6)

Where β = (β1, . . . , βN) is a vector of unknown model coefficients, α = (α1, . . . , αN) is

the unobserved individual specific effects, γ = (γ1, . . . , γT ) is the unobserved time specific

effects and εit is the error term, for i = 1, . . . , N and t = 1, . . . , T . Conditioning the

unobserved effects serves to control for endogeneity as the individual and time effects

capture unobserved heterogeneity that can be related to the covariates. In the statistical

analysis, robust standard errors are used, and they are double-clustered to provide more

accurate standard error estimates8.
7The purpose of analyzing the impact on Z-Score is to provide a robustness check for the use of Merton

(1974)’s structural model for the probability of default. Accordingly, while we will present results for both
the Z-Score and PD, our discussion will focus primarily on PD.
8The double-clustering approach is particularly beneficial in panel data settings where variables of interest
might be correlated both across time (autocorrelation) and cross-sectional units (heteroskedasticity).
Such correlations can violate the Ordinary Least Squares (OLS) assumptions of independence and
homoscedasticity. Taking into account these dual correlations, the method aims to mitigate possible
violations and improve the accuracy of standard error estimates, ensuring robustness against both
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The first econometric specification, given by 1.7, considers the impact of bank regulation

on FI’s PD, while also controlling for lagged capital adequacy ratio to capture temporal

dynamics inherent in banking decisions and reduce potential issues related to reverse

causality (Berger and Bouwman, 2013).

PDit = β1CARit + β2CARit−1 + αi + γt + εit (1.7)

Where PDit ∈ [0, 1] is defined in 1.3 and CARit is the capital adequacy ratio (tier I and

II) of each FIit.

Because there is significant literature that considers the impact of profitability and

performance on FI’s PD in addition to the capital requirement (Jayadev, 2013; Giordana

and Schumacher, 2017), model 1.8 specifies the equation that discusses this case as a

robustness check.

PDit = β1Performanceit + β2CARit + β3CARit−1 + αi + γt + εit (1.8)

In which Performanceit is captured by Spreadit, ROEit (return on equity) and ROAit

(return on assets). ROEit and ROAit are annualized9 and calculated by the net income

divided by equity and net income divided by total assets, respectively, of each FIit. The

Spreadit is defined as the difference between interest income and interest expense taking

into account loan loss provisions10, which is given by 1.9.

Spreadit = Net Interest Incomeit − Net Loan Loss Provisionsit

Gross Interest Incomeit

(1.9)

In order to assess the impact of bank regulation on each FI’s PD and considering the

importance of Basel III as a comprehensive set or reform measures for this purpose (BCBS,

cross-sectional and time-series dependence (Sun et al., 2018; Abadie et al., 2023).
9The annualization is done from the sum of net income over 1 year divided by the average of equity

(ROE) and assets (ROA) in the period.
10It is well known that there is a vast literature that discusses the components of spread for banks.
Although some works for the Brazilian banking sector use the difference between the rate of return
obtained in credit operations and the cost funding in the construction of the ex-post spread (Dantas et al.,
2012; Fiche et al., 2017; Magalhães-Timotioa et al., 2018), our approach considers all sources of interest
income in addition to credit operations (such as lease, security, financial derivative, foreign exchange and
mandatory reserve income). This definition is equivalent to the fraction of net interest income over gross
interest income. However, because net interest income takes into account net loan loss provisions on
the balance sheet of financial institutions in Brazil, the appropriate definition of spread, which is used
to account for the gain from the collection of interest represented as a margin, should disregard these
accounting data
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2011), we used a difference-in-differences approach with the two-way fixed effect model

(Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021; Baker et al., 2022) in equation

1.10 to estimate the impact of Basel III Accord in each Brazilian FI’s PD classified in

Segment 1.

PDit = δDDDit + βCARit−1 + αi + γt + εit (1.10)

Where Dit denotes the interaction term between the indicator variable for the treated

unit, Di (bank Segment 1, in this case), and the indicator variable for observations in

periods t, Postt (Basel III since December 2013, in this case). CARit−1 is the lagged

capital adequacy ratio used to account for the pre-existing levels and trends in CAR prior

to the implementation of Basel III. Note that the presence of both αi and γt subsumes the

main effects of Di and Postt.

To examine the potential conflict that regulators often face, where the pursuit of a

safer banking system could lead to higher banking concentration and an increase in capital

costs (Alexandre et al., 2022), we test the specification given by equation 1.11. This

model assesses the impact of banking concentration on the FI’s PD, taking into account

variations in capital requirement.

PDit = β1Concentrationit + β2CARit + β3CARit−1 + αi + γt + εit (1.11)

In which Concentrationit is measured by asset concentration as in Rosa and Gartner

(2018), which is calculated through the proportion of bankit assets in relation to the sum

of assets of the banking system in t, and CARit is intended to capture the influence of

regulatory capital on PDit.

Lastly, recognizing that an increase in CAR can lead to strategic adaptations by banks

(Shim, 2013; Uluc and Wieladek, 2018; Gropp et al., 2018; Pariès et al., 2022; Alexandre

et al., 2022), our last model focuses on the mechanisms through which CAR affects loan

supply and demand. Therefore, to investigate the relationship between an increase in

the CAR and its effects on the loan market, particularly during periods of economic

uncertainty, we employed the specification given by equation 1.12.

Loanit = β1PDit + β2Concentrationit + β3CARit + β4CARit−1 + αi + γt + εit (1.12)
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Where Loanit represents loan operations by risk level for bank i at time t. The inclusion

of both current and lagged CAR allows us to capture both the immediate and delayed

effects of changes in capital adequacy on lending behavior.

1.3 Data

We utilized quarterly data from December 2000 to September 2022 for 244 Brazilian

financial institutions, yielding an unbalanced panel data with 9,653 observations11. All

balance sheet data employed in this study are publicly provided by the Central Bank of

Brazil (BCB, 2023a).

The data set considers financial conglomerates and independent institutions until

December 2014, and the prudential conglomerates and independent institutions before

March 201512 with the business model category of b1, b2, b4, and n113, provided there are

at least six valid observations in the studied period. The final data set represents 99.82%

of total assets and 99.75% of total credit of covered member institutions in September

2022, with an average of 98.94% and 99.07% throughout the period, respectively. For

the interest rate, we used public data provided by B3, the Brazilian financial market

infrastructure company (B3, 2023).

To estimate the probability of default on a one-year horizon for each FI using the

Merton (1974)’s structural model, we applied the following variables: adjusted total

11Although information is available from 2000:I-2000:III in the database, we used these first three quarters
to calculate assets volatility since bank capital information is available from December 2000.
12Note that until December 2013, the Central Bank of Brazil registered only the institution type of
financial conglomerates and independent institution. Starting before March 2014, the perspective of
prudential conglomerate and independent institution was included. However, capital information from
bank’s DLO (Statement of Operating Limits) was published only in the prudential conglomerate and
independent institution perspective before March 2015. The difference between the two filters lies in the
latter’s inclusion of institutions other than those belonging to the financial conglomerate, such as: (i)
consortium administrators, (ii) payment institutions, (iii) companies that perform acquisition of credit
operations, including real estate or credit rights, (iv) other legal entities domiciled in the country that
have as an exclusive objective an equity interest in the aforementioned entities and (v) investment funds
in which the entities that compose a prudential conglomerate take or retain substantial risks and benefits
(BCB, 2023a).
13We used only these four business model category to account for institutions that issue covered deposits
under the deposit insurance system in Brazil. The categories include: (b1) for commercial banks, universal
banks with commercial portfolios, or savings banks; (b2) for universal banks without commercial portfolios,
investment banks, or foreign exchange banks; and (n1) for non-banking credit companies. The member
institutions are: (i) multiple banks; (ii) commercial banks; (iii) investment banks; (iv) development
banks; (v) Caixa Econômica Federal (Brazilian federal savings bank); (vi) savings banks; (vii) finance and
investment companies; (viii) building societies; (ix) mortgage companies savings; and (x) loan associations
(FGC, 2023; BCB, 2023a). For more information on FGC-covered deposits, see BCB (2021a).
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assets14 for A, total liabilities to calculate DB, annualized interbank interest rate DI for r,

and the annualized standard deviation of the logarithmic returns of adjusted total assets,

that is, log(At/At−1), for asset volatility σA. Table 1.1 presents the aggregate descriptive

statistics for these variables, and all balance sheet accounts are shown in Appendix A.

Table 1.1: Descriptive statistics.

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max
ATAa 44.78 192.25 0.00 0.34 10.29 2,184.86
TLa 40.77 177.47 0.00 0.26 8.95 2,018.16
Loansa 18.54 84.21 0.00 0.10 3.93 978.56
DIb 10.91 5.18 1.90 6.40 14.13 26.23
AV 0.42 0.41 0.00 0.14 0.58 6.03
PDb 16.20 20.28 0.00 0.02 29.98 99.84
Z-Score 12.22 15.97 −1.04 4.65 15.13 542.71
CARb 31.01 40.77 0.38 14.83 30.81 1,151.84
ACb 0.91 3.12 0.00 0.01 0.24 23.91
EAb 22.67 21.21 −2.74 10.05 25.03 100.00
ROAb 2.38 7.75 −113.93 0.69 4.05 125.17
ROEb 5.29 714.41 −69,934.21 4.31 27.23 277.07
Spreadb 48.33 1,815.16 −22,848.87 9.79 51.32 170,490.10
Notes: The sample period runs from 2000:IV-2022:III for the Brazilian financial system.
ATA = adjusted total assets; TL = total liabilities; Loans = loan operations by risk
level; DI = interest rate; AV = assets volatility; PD = probability of default; Z-Score =
(EA + µ(ROA))/σ(ROA); CAR = capital adequacy ratio (tier I and II); AC = assets
concentration; EA = equity over total assets; ROA = return on assets; ROE = return
on equity and Spread = (net interest income - net loan loss provisions)/gross interest
income.
a In BRL billion.
b In percentage.

14The adjusted total assets represent a modification of the total assets, accounting for specific adjustments
related to netting and reclassification. Netting involves consolidating certain balance sheet items, such as
repurchase agreements, interbank relations and relations within branches, the foreign exchange portfolio,
and debtors due to litigation. In addition, reclassifications are performed within the foreign exchange
and leasing portfolios, which may involve reorganizing or reevaluating these assets according to specific
criteria or regulations.
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1.4 Results and Discussion

This section outlines the findings concerning the impact of bank capital regulation

on the probability of default and Z-Score of financial institutions within the Brazilian

financial system from December 2000 to September 2022. As mentioned and detailed in

Section 1.2.3, a two-way fixed effects model was used to control the intrinsic characteristics

of each FI, along with the influence of macroeconomic factors on the probability of default

over time.

The results of the proposed model 1.7, as shown in Table 1.2, are consistent with the

regulatory perspective and resonate with the extensive literature from different economies

(Valahzaghard and Bahrami, 2013; Thakor, 2014; Vazquez and Federico, 2015; Giordana

and Schumacher, 2017; Rosa and Gartner, 2018; Parrado-Martínez et al., 2019; Fidrmuc

and Lind, 2020; Le et al., 2020; BCBS, 2021; Jones et al., 2022). Specifically, they show

that the higher the CAR of an FI, the lower the associated PD. This relationship holds due

to the greater capacity of the institution to absorb losses, a finding that remains robust

even after controlling for past CAR15.

In particular, Table 1.2 shows that, on average, an increase of 1% in CAR reduces PD

by 8.4% without considering the influence of lagged CAR. However, when historical capital

measures are taken into account, the dynamics become more elaborate. A 1% increase in

the current CAR diminishes PD by 3.7%, and the lagged CAR from the previous period

contributes further to a reduction of 4.05%. This pattern accentuates the prolonged impact

of CAR decisions, underscoring that robust financial strategies in one period can have

lasting positive implications for subsequent periods.

15Incorporating lagged CAR into the model captures the time-dependent nature of banking decisions
and the potential lag in responses due to regulatory compliance. Moreover, this inclusion helps address
potential issues of reverse causality (Berger and Bouwman, 2013). To ensure robustness, we controlled for
higher levels of lagged CAR up to one year. The results, presented in Table A.3 in Appendix A, support
the decision to use only one lagged CAR.
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Table 1.2: Effects of capital adequacy ratio on FI’s PD and Z-Score.

Probability of Default Z-Score
(1) (2) (3) (4)

Capital Adequacy Ratio −8.3943∗∗ −3.7089∗ 0.4895∗∗∗ 0.3959∗∗∗

(3.5424) (2.1385) (0.0489) (0.0435)

Capital Adequacy Ratiot−1 −4.0481∗ 0.1163∗∗∗

(2.2651) (0.0436)

Observations 9,475 9,216 9,583 9,295
R2 0.0064 0.0057 0.1491 0.1521
Adjusted R2 −0.0291 −0.0309 0.1188 0.1209
F Statistic 58.8755∗∗∗ 25.2641∗∗∗ 1,620.8760∗∗∗ 803.8809∗∗∗

Notes: This table presents the two-way fixed effects estimates of the FI’s capital adequacy ratio
on their PD and Z-Score. Both dependent and independent variables are in the natural log.
Robust standard errors double-clustered are in parentheses. ***, **, and * denote statistical
significance at 1%, 5%, and 10%, respectively.

It can be argued that a higher CAR does not always lead to a reduction in an FI’s

PD, particularly when an excess of capital results in inefficient allocation of resources.

Consequently, an excess of misallocated capital can consume an FI’s profit margin to the

point of increasing its probability of default (Jayadev, 2013; Giordana and Schumacher,

2017). This scenario may arise when financial institutions engage in overly conservative

investment strategies or fail to optimize their capital structures, leading to decreased

profitability and increased vulnerability to default. To address this case, equation 1.8 was

estimated as a robustness check to control for the impact of CAR on PD, considering

performance metrics such as return on assets, return on equity, and spread of each financial

institution. The results, displayed in Table 1.3, show that PD still decreases (and Z-Score

increases) with an increase in CAR, even when controlling for ROA in Regressions (1)

and (4), ROE in Regressions (2) and (5), and spread in Regressions (3) and (6)16. This

finding aligns with the conclusions reached by Valahzaghard and Bahrami (2013), Rosa

and Gartner (2018), Parrado-Martínez et al. (2019), and Davydov et al. (2021).

16The robustness of these results, including controls for lagged CAR, is confirmed in Table A.4 in Appendix
A.
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Table 1.3: Effects of CAR and performance on FI’s PD and Z-Score.

Probability of Default Z-Score
(1) (2) (3) (4) (5) (6)

ROA −1.11∗∗∗ 0.07∗∗∗

(0.35) (0.02)

ROE −0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)

Spread −0.86∗∗ 0.06∗∗∗

(0.34) (0.02)

CAR −3.64∗∗∗ −4.02∗∗∗ −3.93∗∗∗ 0.43∗∗∗ 0.49∗∗∗ 0.46∗∗∗

(1.11) (0.84) (0.94) (0.06) (0.05) (0.06)

Observations 7,946 9,653 7,972 7,937 9,583 7,930
R2 0.05 0.04 0.05 0.15 0.15 0.16
Adjusted R2 0.01 0.00 0.01 0.12 0.12 0.12
F Statistic 182.29∗∗∗ 184.31∗∗∗ 189.86∗∗∗ 681.41∗∗∗ 826.24∗∗∗ 702.81∗∗∗

Notes: This table presents the two-way fixed effects estimates of the FI’s capital adequacy ratio
and performance on their PD and Z-Score. CAR = capital adequacy ratio (tier I and II); ROA
= return on assets and ROE = return on equity. All variables are in the natural log except PD
and ROE. Robust standard errors double-clustered are in parentheses. ***, **, and * denote
statistical significance at 1%, 5%, and 10%, respectively.

In addition to the impact that the CAR has on FI’s PD and Z-Score, it is also important

to explore the effects of the Basel III agreement in Brazil, implemented since October

2013. Designed to strengthen the resilience and risk management practices of financial

institutions, Basel III’s implementation within the Brazilian banking system is expected to

significantly influence bank PD. We have also incorporated a control for lagged CAR in our

analysis to account for pre-existing levels and trends in CAR before the implementation of

Basel III. Utilizing a difference-in-differences approach (as outlined in equation 1.10), our

findings reveal that the Basel III agreement led to a 3.4% reduction in the probability of

default for Brazilian banks in Segment 1, as shown in Regression (2) of Table 1.4.
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Table 1.4: Effects of Basel III Accord on FI’s PD and Z-Score.

Probability of Default Z-Score
(1) (2) (3) (4)

Basel III:S1 −4.5962∗∗ −3.3930∗∗ 0.3097∗∗ 0.2210∗

(1.9259) (1.7308) (0.1264) (0.1277)

CARt−1 −7.0039∗∗ 0.4328∗∗∗

(3.2094) (0.0519)

Observations 9,475 9,216 9,583 9,295
R2 0.0002 0.0053 0.0053 0.1219
Adjusted R2 −0.0356 −0.0313 −0.0301 0.0896
F Statistic 1.4956 23.4912∗∗∗ 48.8479∗∗∗ 622.0274∗∗∗

Notes: This table presents the difference-in-difference estimates in a two-way fixed
effects model, assuming a value of 1 for FIs classified in Segment 1 after the Basel III
Accord. Note that the post-treatment indicator are subsumed by the fixed effects. Basel
III was implemented in Brazil in October 2013, guided by four resolutions (No. 4.192
to 4.195) and fifteen circulars (No. 3.634 to 3.648), released on March 1, 2013. These
documents delineated the implementation rules for the banking system, detailing a
convergence calendar that specified a requirement of 11% of the RWA from October 2013
to December 2015; 9.875% in 2016; 9.25% in 2017; 8.625% in 2018; and 8% from 2019
onward, in addition to particular capital buffers (BCB, 2022b). The dependent variables
are in the natural log. Robust standard errors double-clustered are in parentheses. ***,
**, and * denote statistical significance at 1%, 5%, and 10%, respectively.

These results in Table 1.4 align with expectations from a regulatory perspective, as

Basel III increased the capital requirements for banks, ensuring greater resilience to

withstand losses during financial stress. This was achieved by focusing on going-concern

loss-absorbing capital, notably in the form of Common Equity Tier 1 (CET1) capital,

within Segment 1, enhancing the overall quality of bank regulatory capital. Furthermore,

Basel III introduced several macroprudential measures into the regulatory framework.

These include (i) capital buffers that are built during favorable economic conditions and

can be utilized during stressful periods to reduce procyclicality; (ii) a large exposure regime

to mitigate systemic risks associated with interconnectedness among financial institutions

and concentrated exposures; and (iii) a specialized capital buffer to address externalities

created by systemically important banks, often referred to as Segment 1 in the Brazilian

financial market (BCBS, 2017).

It is worth noting that the implementation of the Basel III Accord in Brazil was more

rigorous than in other international contexts. While the agreement set a minimum capital
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requirement of 8%, the BCB increased this requirement to 11% to operate in the market,

along with additional specific capital buffers17. In addition to the capital requirements,

it is important to examine the banking concentration within Brazil. Since 2015, the

Concentration Ratio of the Five Largest (RC5) Brazilian banks has exceeded 65% across

various banking segments18 and accounting aggregates, such as assets, deposits, and credit

operations. The overall concentration reached an average of 79.2% in 2018, followed by

78.6% in 2019, 75.5% in 2020, 74.2% in 2021, and 73% in 2022 (BCB, 2022a). This

gradual decrease in bank concentration in recent years can be attributed to specific market

dynamics. Notably, the loss of market share by public banks (from 47.6% in 2019 to 43.7%

in 2022), particularly BNDES, and the concurrent advancement of cooperatives (from

4.3% in 2019 to 6.4% in 2022), have contributed to this trend.

These aspects of the Brazilian economy, in conjunction with a robust and well-capitalized

banking market, limit the occurrence of banking failure (Liberman et al., 2018). In terms

of magnitude, from 2000 to September 2022, FGC, the Brazilian private DIA, recorded

only 20 extrajudicial settlements or interventions made by the BCB on the banking market

(8.2%). In contrast, the Federal Deposit Insurance Corporation (FDIC) in the USA

registered 563 interventions (11.9%), reflecting a different regulatory environment19.

Thus, the high concentration in Brazil’s banking sector raises important questions

about its role as a control variable in assessing the impact of CAR on PD, considering

that a higher concentration can be indicative of a more consolidated and stable financial

system. In this sense, Table 1.5 shows, as expected from a regulatory point of view and

consistent with the literature for different economies (Berger and Bouwman, 2013; Rosa

and Gartner, 2018; Parrado-Martínez et al., 2019; Karolyi et al., 2023), that an increase of

1 percentage point (pp) in the concentration of banking assets reduces the PD, on average,

by 1.4%20.

17For more information, see Appendix A.1.
18The BCB (2022a) considers three levels of aggregation to calculate the concentration of RC5: banking
and non-banking segment (b1 + b2 + b3 + b4 + n1), banking segment (b1 + b2), and commercial banking
segment (b1). The business model category (b1) includes commercial banks, multiples with a commercial
portfolio and savings banks; (b2), multiple banks without a commercial portfolio and investment banks;
(b3), credit unions; (b4), development banks; and (n1), non-bank credit institutions.
19For more information, see FGC for the list of banking failures in Brazil and FDIC for the list of banking
failures in the USA. The percentages were calculated considering the member institutions of the deposit
insurance in each country in September 2022.
20It is worth mentioning that, as a robustness check, while the Basel III Accord reduced by 3.4% the
probability of default of Segment 1 in Brazil, it also increased in 0.4% the banking assets concentration in
this same sample.
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Table 1.5: Effects of banking assets concentration and CAR on FI’s PD.

Probability of Default
(1) (2)

Banking Assets Concentration −1.4141∗ −0.7292
(0.7637) (0.4794)

Capital Adequacy Ratio −8.4893∗∗ −3.7323∗

(3.5434) (2.1410)

Capital Adequacy Ratiot−1 −4.0815∗

(2.2686)

Observations 9,475 9,216
R2 0.0067 0.0058
Adjusted R2 −0.0289 −0.0309
F Statistic 31.0695∗∗∗ 17.1804∗∗∗

Notes: This table presents the two-way fixed effects estimates of the FI’s assets concen-
tration and CAR on their PD. Assets concentration represents the ratio of the assets
of a specific bank to the total assets in the banking system at time t. Although the
Herfindahl-Hirschman index could be used by squaring assets concentration (Dantas
et al., 2012; Fiche et al., 2017; Matt and Andrade, 2019), we opted for the unaltered
assets concentration metric as in Rosa and Gartner (2018), to enable a more straight-
forward interpretation of the coefficient. Regression (2) includes the lag of CAR to
control its impact on assets banking concentration. All dependent and independent
variables are in the natural log, except Assets Concentration. Robust standard errors
double-clustered are in parentheses. ***, **, and * denote statistical significance at 1%,
5%, and 10%, respectively.

In addition to bolstering financial stability and influencing banking concentration, an

elevated CAR can have significant implications for the loan market. These effects are

especially pronounced during economic downturns marked by heightened default rates

and restricted liquidity. When confronted with these challenges, banks might strategically

adjust by either reducing assets, leading to a contraction in loan supply, or by raising

loan interest rates, subsequently suppressing loan demand (Shim, 2013; Noss and Toffano,

2016; Uluc and Wieladek, 2018; Gropp et al., 2018; Acharya et al., 2018; De Nicolò, 2019;

Fraisse et al., 2020; Malovaná and Ehrenbergerová, 2022; Pariès et al., 2022; Alexandre

et al., 2022; Bonaccorsi di Patti et al., 2023).

However, it is important to note that the impact of CAR on loan supply is not

a consensus in the banking literature. In contrast to the earlier view, a higher CAR

could theoretically facilitate an increase in loan supply, especially if this enhanced capital
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buffer bolsters investor and depositor confidence, encouraging banks to extend more loans.

Additionally, when capital buffers make banks safer and more resilient, markets might

perceive them as less risky, leading to a reduction in their marginal cost of funding.

Consequently, they may be better positioned to assume greater risks, either by relaxing

lending standards or increasing the volume of loans in their portfolio (Thakor, 2014; Bassett

and Berrospide, 2018; Begenau, 2020; Bahaj and Malherbe, 2020).

Our results, as shown in Table 1.6, align with the prevailing literature, suggesting that

heightened capital requirements result in a decreased supply of loans. In particular, a 1%

increase in the current CAR is associated with a 3.2% decline in loan operations.

Table 1.6: Effects of banking assets concentration, CAR and PD on FI’s loan operations.

Loan Operations
(1) (2)

Probability of Default −0.0096∗∗ −0.0107∗∗

(0.0041) (0.0046)

Banking Assets Concentration 0.9373∗∗∗ 0.9151∗∗∗

(0.0674) (0.0693)

Capital Adequacy Ratio −0.4135∗∗∗ −0.3194∗∗∗

(0.0994) (0.0904)

Capital Adequacy Ratiot−1 −0.1155∗∗

(0.0555)

Observations 8,860 8,563
R2 0.4345 0.4284
Adjusted R2 0.4133 0.4062
F Statistic 2,187.0470∗∗∗ 1,544.2940∗∗∗

Notes: This table presents the two-way fixed effects estimates of the FI’s probability of
default, banking assets concentration, and capital adequacy ratio on their loan operations
by risk level. All dependent and independent variables are in the natural log, except
probability of default. Robust standard errors double-clustered are in parentheses. ***,
**, and * denote statistical significance at 1%, 5%, and 10%, respectively.

The findings from this research underscore the need for a comprehensive examina-

tion of the complex trade-offs faced by regulators. Striking the right balance involves

careful consideration of factors such as banking concentration, the cost of capital, and

comprehensive regulatory requirements designed to prevent systemic crises. This raises a
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natural question about possible regulatory easing that could foster banking competition,

enhance the efficiency of financial intermediation, and promote overall social welfare, while

maintaining a stable financial system. Addressing such a multifaceted question requires a

comprehensive analysis, incorporating both theoretical insights and empirical evidence, to

discern the economic consequences of variations in capital requirements. This complex

issue will be explored in more depth and discussed in Chapter 2.

1.5 Final Remarks

This paper examines bank risk using the structural model of Merton (1974) and Z-Score,

employing public balance sheet data to evaluate the impact of bank capital regulation on

banks’ probability of default. To achieve this, we utilized the two-way fixed effects model

and a difference-in-difference approach, analyzing data from the Brazilian banking market

from December 2000 to September 2022. The results confirm the practical importance

of regulatory measures such as Basel III and highlight the need for balanced capital

requirements to enhance financial stability.

Our findings indicate that an increase in the capital adequacy ratio results in a

decreased probability of default for banks, a relationship that holds even when accounting

for performance metrics such as ROA, ROE, Spread, and lagged CAR. Furthermore, our

analysis reveals that the implementation of the Basel III agreement has also played a

role in reducing the PD of banks. In the context of Brazil, our findings highlight the

trade-offs faced by regulators, where a higher CAR is associated not only with a lower

PD, but also with an increased banking concentration and a reduction in loan operations.

Consequently, striking the right balance requires careful consideration of factors such

as banking concentration, cost of capital, and comprehensive regulatory requirements

designed to mitigate systemic crises.

The implications of our results should be informative for regulators concerned with

the impact of capital regulation on banks’ PD. In particular, this study raises questions

about how regulatory frameworks can be optimized to enhance banking competition and

social welfare, while maintaining a stable financial system. However, addressing such a

multifaceted question requires a comprehensive analysis that combines both theoretical

insights and empirical evidence. We explore these aspects in more detail in Chapter 2.
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Chapter 2

Systemic Risk Measures and

Optimized Capital Requirement

2.1 Introduction

The recent Global Financial Crisis has emphasized the importance of policies that

improve the overall stability of the financial system. This crisis served as one of the clearest

illustrations in history of systemic risk, in which banks and credit play a particularly

important role (De Bandt and Hartmann, 2019). Although the topic has generated extensive

literature and intense financial interest, many macroeconomists and policymakers recognize

a significant gap in understanding the channels of system-wide risk and the contribution

of systemic risk by individual financial institutions to the broader economy (Christiano

et al., 2018; Fidrmuc and Lind, 2020). Furthermore, the critical nature of this issue has

generated a growing consensus among policymakers to adopt a macroprudential approach

to regulation and supervision, as it is considered essential to ensure a resilient global

financial system (Hannoun, 2010; Borio, 2011; Galati and Moessner, 2013).

Understanding how financial institutions affect systemic risk, whether through their

idiosyncratic characteristics or its connections with the rest of the economy, is fundamental

for effective action by central banks and policymakers in time of crisis. In that sense, Basel

III was introduced as an important part of macroprudential regulation in response to the

GFC. Introduced in 2010 by the Basel Committee on Banking Supervision (BCBS) at

the Bank for International Settlements (BIS), Basel III comprises a robust set of reform

measures aimed to enhance banking regulation, supervision, and risk management. Its
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goal is to fortify the banking sector and foster financial stability by elevating bank liquidity

and diminishing bank leverage. One of the core metrics created for this purpose is the

requirement of a minimum capital adequacy ratio (CAR)1 that banks must maintain to

operate in the market, which is an important tool to absorb unexpected losses without

requiring the bank to cease its operations (BCBS, 2011).

In addition to Basel III’s capital requirements (CR) and capital buffers2, other regulatory

mechanisms have been designed to mitigate systemic risk. In particular, the Financial

Stability Board (FSB) introduced the bail-in framework in 2018 as a resolution strategy for

handling distressed banks without resorting to taxpayer-funded bailouts. Bail-in prescribes

ex-ante resolution planning without the use of public funds for solvency support, obliging

shareholders and creditors to share the burden of losses (FSB, 2018, 2021). Together,

these mechanisms underscore the ongoing commitment of policymakers and central banks

to address the critical issue of financial stability.

Although there exists a large literature exploring Basel III’s impact on banks’ balance

sheets and its transmission to the real economy, especially since the GFC, the topic

continues to be a subject of active discussion and research. However, a broad consensus

supported by substantial evidence recognizes the benefits of Basel III in enhancing financial

stability. This has been achieved principally through the reduction in banks’ probability of

default, as corroborated by numerous studies for different economies (Berger and Bouwman,

2013; Vazquez and Federico, 2015; Giordana and Schumacher, 2017; Rosa and Gartner,

2018; Parrado-Martínez et al., 2019; Le et al., 2020; BCBS, 2021; Jones et al., 2022).

With respect to unresolved questions concerning the effects on capital cost, banking

lending, and banking concentration, many works have shown (Maredza, 2016; Gropp et al.,

2018; De Nicolò, 2019; Fraisse et al., 2020; Alexandre et al., 2022; Tran et al., 2022; BCBS,

2022; Bonaccorsi di Patti et al., 2023), as well as in Chapter 1, that financial regulators

often face conflicting objectives. One of the trade-offs faced by them in establishing the

1The capital adequacy ratio is calculated by summing Tier 1 and Tier 2 capital and dividing them by the
risk-weighted assets (RWA). Tier 1 capital is the core capital of a bank and is formed by the Common
Equity Tier 1 (CET1) and Additional Tier 1 (AT1), which includes equity capital and disclosed reserves.
This type of capital, also described as going-concern capital, can absorb losses without requiring the bank
to cease its operations. On the other hand, Tier 2 capital, also described as gone-concern capital, has a
lower standard than Tier 1 and is used to absorb losses in the event of a liquidation.
2Basel III introduces two capital buffers that financial institutions must hold beyond other minimum
capital requirements: the capital conservation buffer, providing an extra layer of usable capital to absorb
losses, and the countercyclical capital buffer (CCyB), aimed at protecting the banking sector from periods
of excess credit growth associated with system-wide risks.
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minimum CR, with the goal of both strengthening the financial system and preventing

systemic crises, is the potential pitfall that a more secure system might lead to greater

banking concentration and higher capital costs. This could undermine the efficiency of

financial intermediation, potentially resulting in a social cost that outweighs its benefit.

The challenge arises because banks, in response to higher capital requirements, may either

reduce assets, thus diminishing loan supply, or elevate the loan interest rate, resulting in a

decrease in loan demand3. Thus, the design of the financial system’s protection mechanism

must be finely calibrated, with the goal of maximizing social welfare without unintended

consequences.

Regarding the Brazilian context, the implementation of the Basel III Accord was more

rigorous than in other international contexts. While the agreement set a minimum CR of

8%, the Central Bank of Brazil increased this requirement to 11% to operate in the market,

along with additional specific capital buffers4. In addition to the capital requirements, it is

important to examine the banking concentration within Brazil. As mentioned in Chapter

1, since 2015, the Concentration Ratio of the Five Largest Brazilian banks has exceeded

65% across various banking segments5 and accounting aggregates, such as assets, deposits,

and credit operations. The overall concentration reached an average of 79.2% in 2018,

followed by 78.6% in 2019, 75.5% in 2020, 74.2% in 2021, and 73% in 2022 (BCB, 2022a).

These aspects of the Brazilian economy, in conjunction with a robust and well-capitalized

banking market, limit the occurrence of banking failure (Liberman et al., 2018). In terms

of magnitude, from 2000 to September 2022, the Brazilian private deposit insurance agency,

Fundo Garantidor de Créditos, recorded only 20 extrajudicial settlements or interventions

made by the BCB on the banking market (8.2%). In contrast, the Federal Deposit

Insurance Corporation (FDIC) in the USA registered 563 interventions (11.9%), reflecting

3It is important to note, however, that the impact of CAR on loan supply is not a consensus in the banking
literature. In contrast to the earlier view, a higher CAR could theoretically facilitate an increase in loan
supply, especially if this enhanced capital buffer bolsters investor and depositor confidence, encouraging
banks to extend more loans. Additionally, when capital buffers make banks safer and more resilient,
markets might perceive them as less risky, leading to a reduction in their marginal cost of funding.
Consequently, they may be better positioned to assume greater risks, either by relaxing lending standards
or increasing the volume of loans in their portfolio (Thakor, 2014; Bassett and Berrospide, 2018; Begenau,
2020; Bahaj and Malherbe, 2020).
4For more information, see Annex A.1.
5The BCB (2022a) considers three levels of aggregation to calculate the concentration of RC5: banking
and non-banking segment (b1 + b2 + b3 + b4 + n1), banking segment (b1 + b2), and commercial banking
segment (b1). The business model category (b1) includes commercial banks, multiples with a commercial
portfolio and savings banks; (b2), multiple banks without a commercial portfolio and investment banks;
(b3), credit unions; (b4), development banks; and (n1), non-bank credit institutions.
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a different regulatory environment6.

In light of this scenario, two essential questions arise. The first question concerns the

key factors that contribute to bank runs in the Brazilian financial system and the ways

in which policymakers can proactively mitigate these risks to ensure financial stability.

The second question examines how regulatory frameworks can be optimized to enhance

banking competition, efficiency of financial intermediation, and social welfare, all while

maintaining a stable financial system. To address these questions, this work has two main

objectives. First, we estimate different measures to understand the systemic risk that

individual banks contribute to the market. Second, we propose a novel bank run model

that simulates the loss distribution (LD), the probability of default of the DIA, and an

optimized CR and CAR within the Brazilian banking system.

This paper begins by estimating several well-known measures in bank risk literature,

including (i) Systemic Expected Shortfall (SES), (ii) Systemic Risk (SRISK), and (iii)

Conditional Value-at-Risk (CoVar) (Adrian and Brunnermeier, 2016; Acharya et al., 2010,

2017; Engle, 2018). However, given that these measures are primarily applicable for listed

banks, and our analysis seeks to encompass all financial institutions in the Brazilian

banking system, we determine a bank’s PD using granular public accounting data based

on the structural model of Merton (1974).

After considering these market-based measures, we developed a theoretical framework

similar to those used to calculate portfolio risk in banking organizations. Our focus is on

proposing a bank run model, first employing it on a reduced sample (RS) of only listed

banks, and, subsequently, on a full sample (FS) that encompasses all banks covered by the

Brazilian DIA. We also model an optimized CR for the RS, utilizing a heterogeneous CR

framework as in Alexandre et al. (2022). Through this approach, our aim is to provide

comprehensive insights into the dynamics of the Brazilian banking system.

This work is divided into five sections, beginning with this Introduction. Section 2.2

outlines the theoretical framework of all our analyzes to estimate the systemic risk of

each bank, the bank run model, and the optimized CR for the Brazilian financial system.

Section 2.3 presents the data used in our models. Section 2.4 offers the results and a

discussion of our findings, and Section 2.5 concludes with the final remarks of this paper.

6For more information, see FGC for the list of banking failures in Brazil and FDIC for the list of banking
failures in the USA. The percentages were calculated considering the member institutions of the deposit
insurance in each economy in September 2022.
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2.2 Systemic Risk Measures

This section presents the theoretical framework used to estimate each financial insti-

tution’s contribution to systemic risk. We divided this section into two categories: (i)

traditional measures based on market data, and (ii) structural models that use publicly

available balance sheet information. Our contribution focuses on the development of a

bank run model that considers different channels of contagion used to calculate the loss

distribution, the PD of the DIA, and the optimized capital requirement for the Brazilian

banking system. To this end, it is important to address the theoretical grounds for

understanding systemic risk.

Systemic risk refers to the risk of a financial crisis or market failure that affects the

stability of the financial system and has widespread effects on the economy as a whole.

This type of risk is of particular concern in financial systems due to the interconnectedness

of financial institutions, which can amplify the effects of individual failures and propagate

shocks throughout the system as a negative domino effect. In recent years, the concept

of systemic risk has gained increasing attention from academics and policymakers, as

the GFC highlighted the potential consequences of systemic failures (Brunnermeier and

Oehmke, 2013; Adrian and Brunnermeier, 2016; De Bandt and Hartmann, 2019).

Measuring systemic risk in the financial system is, to some extent, related to measuring

banking risk. This makes risk measures at the bank level a natural starting point for

understanding systemic risk. The purpose of these measures is to reduce a large amount

of data into a single meaningful statistic, providing a summary and risk ranking of each

financial institution. Over the last two decades, especially after the implementation of

Basel II bank regulations and the GFC, a large literature has explored and created metrics

to measure and capture systemic risk based on market data such as: (i) Systemic Expected

Shortfall (SES), (ii) Systemic Risk (SRISK), (iii) Conditional Value-at-Risk (CoVar), and

many others7 (Brunnermeier and Oehmke, 2013; Adrian and Brunnermeier, 2016; Acharya

et al., 2010, 2017; Brownlees and Engle, 2017; Engle, 2018). In order to explore these

metrics, the next subsection addresses the foundations and definitions of each concept.

7Bisias et al. (2012) categorize and contrast more than 30 systemic risk measures. For more information
on the extensive literature on systemic risk and its connection with the current regulatory debate, see also
Jobst and Gray (2013), Benoit et al. (2017) and Silva et al. (2017).
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2.2.1 Market-Based Metrics

2.2.1.1 Fundamentals

Because we are essentially dealing with market data when constructing the main

measures in the literature, we begin by defining some components that they have in

common. Consider N financial institutions and let ri
t be the log return of the daily stock

price of bank i at time t, i = 1, . . . , N and t = 1, . . . , T . Also, let rm
t be the log return of

the daily market index to which all banks participate, which in our case is captured by the

Bovespa index (Ibovespa)8. Then, the bank and market return processes are given by 2.1.

ri
t = µi + εi

t and rm
t = µm + εm

t (2.1)

In which µ is the expected return and εt is a zero-mean white noise. Although serially

uncorrelated, the series εt does not need to be serially independent and can present

conditional heteroskedasticity (Zakoian, 1994). Thus, to model this time-varying volatility,

we used the the GJR-GARCH (p, q) model (Glosten et al., 1993) that allows shock

asymmetry through γ and assumes a specific parametric form of εt = σtzt for this

conditional heteroskedasticity, where zt is a standard Gaussian and the volatility σt is

given by 2.2.

σ2
t = ω +

p∑
k=1

(αk + γkIt−k)ε2
t−k +

q∑
j=1

βjσ
2
t−j (2.2)

Where

It−k :=


0 if rt−k ≥ µ,

1 otherwise
(2.3)

Following Brownlees and Engle (2017) and Engle (2018), we used GJR-GARCH (1,1)

for all models and also found that this specification best fits our data. Furthermore, all

parameters (µ, ω, α, γ, β) were simultaneously estimated by maximizing the log likelihood

8Ibovespa is the main performance indicator of the stocks traded in B3 and lists major companies in
the Brazilian capital market. It was created in 1968 and, over the last 50 years, has set a benchmark for
investors around the world. Ibovespa is reassessed every four months and is the result of a theoretical
portfolio of stocks. It is composed of stocks and units of companies listed on B3 that meet the criteria
described in its methodology, accounting for about 80% of the number of trades and the financial volume
of our capital markets. For more information, see B3 (2023).
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and the best model was selected based on the Bayesian Information Criterion (BIC)

and the Akaike Information Criterion (AIC). In addition, we use the strictly positive

restriction on all parameters beside µ. The assumption that zt is Gaussian does not imply

that the returns are Gaussian. Although their conditional distribution is Gaussian, their

unconditional distribution presents excess of kurtosis (fat tails). However, if the true

distribution is different, the Quasi-Maximum Likelihood (QML) estimator is still consistent

(Glosten et al., 1993).

Despite the assumption that returns are serially uncorrelated, they may present

contemporaneous correlation. In other words, from equation 2.1, defining a vector of

zero-mean white noise as εt = rt − µ, ∑t := Et−1[(rt − µ)(rt − µ)′ ] may not be a diagonal

matrix. Moreover, this contemporaneous variance may be time-varying, depending on

past information. Therefore, the correlation between each bank i and the market index is

captured by the GARCH-DCC model (Engle, 2002, 2009) and is estimated in two steps.

The first step of the GARCH-DCC model accounts for the conditional heteroskedasticity.

It consists of estimating the conditional volatility σi
t using a GARCH (1,1) model (Engle,

1982; Bollerslev, 1986) for each one of the N bank series of returns ri
t. Let Dt be the

diagonal matrix with these conditional volatilities, that is, Di,i
t = σi

t and, if i ̸= j, Di,j
t = 0.

Then the standardized residuals with unit conditional volatility, νt, are given by Equation

2.4 and the Bollerslev (1990)’s constant conditional correlation (CCC) estimator, R, is

given by Equation 2.5.

νt := D−1
t (rt − µ) (2.4)

R := 1
T

T∑
t=1

νtν
′

t (2.5)

The second and final step consists in generalizing Bollerslev (1990)’s CCC to capture

dynamics in the correlation, giving origins to the dynamic conditional correlation (DCC).

Assuming the standardized residuals are jointly Gaussian and let Qi,j
t be the correlation

between ri
t and rj

t at time t, the DCC correlations are given by Equation 2.6.

Qt = R +
p∑

k=1
αk(νt−kν

′

t−k − R) +
q∑

j=1
βj(Qt−j − R) (2.6)

Where both parameters, α, β > 0, are simultaneously estimated by maximizing the log
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likelihood and the best model was selected based on the BIC and AIC information criterion.

Once these common components of volatility and correlation are defined, the following

subsections present the concept and definition of the main metrics of systemic risk that

use market data.

2.2.1.2 Systemic Expected Shortfall

The systemic expected shortfall (SES) proposed by Acharya et al. (2010, 2017) measures

the expected capital shortfall of a bank conditional on a substantial reduction in the

capitalization of the banking system and also provides a ranking for systemically risky

banks. The theoretical approach of this model considers that the aggregate capital shortfall

of the financial sector imposes a negative externality on the real economy. Thus, in order

to estimate the capital shortfall of the financial sector, the first step is to estimate the

marginal expected shortfall (MES) of a bank. MES is the expected short-term equity

loss of a financial institution conditional on the market taking a loss greater than its

Value-at-Risk (VaR) at α%. Taking into account the parameters established in Section

2.2.1.1, the MES is given by 2.7.

MESit = Et−1(ri
t|rm

t < C) (2.7)

Where C = qα(rm
t ) is a threshold corresponding to the tail risk in the market at time t.

Note that the definition of Acharya et al. (2010, 2017) considers the market return rm
t

as the value-weighted average of all bank returns in the market, that is, rm
t = ∑N

i=1 wi
tr

i
t,

where wi
t denotes the relative market capitalization of the bank i. However, although it

would be possible to reconstruct the rm
t through each ri

t, we opt to use the main benchmark

of the Brazilian stock exchange, Ibovespa, as our rm
t for purposes of comparability of

results with the literature.

Also, define the expected shortfall (ES) of the market as the expected loss in the

index conditional on this loss being greater than C, i.e., ESt = Et−1(rm
t |rm

t < C). Thus,

note that MES of one bank is the derivative, or the marginal effect, of the market’s ES

with respect to the bank’s market share (or capitalization). Therefore, the MES of a

bank in this case can be interpreted as reflecting its contribution and participation to

overall systemic risk. The higher the MES, the higher is the individual contribution of the

bank to the risk of the financial system. However, it is still possible to define the same
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statistic even if the observed bank does not participate in the market index. Rather than

a measure of how a particular bank’s risk adds to the market risk, the MES in this other

case should be viewed as a measure of the sensitivity (or resilience) of the bank’s stock

price to exceptionally bad market events.

After defining the ES and MES, the SES can be understood as an extension of the

MES. Specifically, the SES quantifies the extent to which a bank’s equity falls below its

target level, set as a fraction k of assets, during a systemic crisis where the overall capital

is less than a fraction k of the total assets. Formally, the SES is given by 2.8.

SESit

Wit

= kLit − 1 − Et−1

(
ri

t |
N∑

i=1
Wit < k

N∑
i=1

Ait

)
(2.8)

Where Ait denotes the total assets, Wit the market capitalization or market value of the

equity, and Lit = Ait/Wit the leverage. In particular, in this work we set the prudential

capital fraction k according to the prudential segment of each Brazilian bank9. Acharya

et al. (2010, 2017) show that the conditional expectation term can be expressed as an

increasing linear function of MES, given by Equation 2.9.

SESit = (kLit − 1 + θMESit + ∆i)Wit (2.9)

In which θ and ∆i are constant terms.

2.2.1.3 Systemic Risk

Taking into account the significant negative externalities that undercapitalization of

large financial institutions has on the real economy, Brownlees and Engle (2017) proposed

a systemic risk metric called SRISK to measure the capital shortfall of a bank conditional

on a severe market decline10. Although this contribution is related to the SES measure

proposed by Acharya et al. (2010, 2017), the authors argue that SRISK does not require

9In accordance with Resolution CMN n.º 4.553/2017, the Central Bank of Brazil segments financial
institutions and other licensed entities into five categories: S1 includes universal banks, commercial banks,
investment banks, foreign exchange banks, and federal savings banks with a size equal to or exceeding 10%
of the GDP or those engaging in relevant international activity; S2 encompasses the same bank categories
as S1 but with a size less than 10% and equal to or exceeding 1% of the GDP, and other institutions with
a size equal to or exceeding 1% of the GDP; S3 is for institutions with a size below 1% but equal to or
exceeding 0.1% of the GDP; S4 consists of institutions with a size less than 0.1% of the GDP; and S5
includes institutions below 0.1% of the GDP that utilize a simplified optional methodology for determining
minimum equity requirements, excluding the banks listed in S1 and S2.
10For an early report on SRISK, see Acharya et al. (2010, 2012) and Engle (2016).
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structural assumptions or observation of the realization of a systemic crisis for estimation,

making this a viable ex-ante measure with higher predictive power than SES. Furthermore,

the authors argue that aggregate SRISK also provides early warning signals of distress in

indicators of real activity.

The SRISK calculation is analogous to the stress tests that are applied to financial

institutions but only uses market data that are publicly available. The capital shortfall is

the variable introduced to measure the distress of a financial institution, which can be

defined as the difference between the regulatory capital reserves that the bank needs to

hold and the bank’s equity. Formally, the capital shortfall of a bank i in time t is given by

2.10.

CSit = kAit − Wit = k(Dit + Wit) − Wit (2.10)

Where Dit is the book value of the debt and the other parameters were previously defined

in Section 2.2.1.2. The capital shortfall can be understood as the negative of the working

capital of the bank. When the capital shortfall is negative, that is, the bank has a capital

surplus, the bank functions properly. However, when this metric is positive, the bank

experiences distress.

Because the interest is to predict the capital shortfall of a bank in the case of a systemic

event, Brownlees and Engle (2017) uses the same concept of a market decline below a

threshold C proposed by Acharya et al. (2010, 2017). Thus, the definition of SRISK as

the expected capital shortfall conditional on a systemic event is given by 2.11.

SRISKit = Et(CSit+h|rm
t+1:t+h < C)

= kEt(Dit+h|rm
t+1:t+h < C) − (1 − k)Et(Wit+h|rm

t+1:t+h < C)
(2.11)

In which {rm
t+1:t+h < C} is the systemic event with probability α, rm

t+1:t+h is the multiperiod

arithmetic market return between periods t + 1 and t + h, and SRISKit ≥ 0. In order to

compute this expectation, the authors assume that, in the case of a systemic event, debt

cannot be renegotiated, which implies that Et(Dit+h|rm
t+1:t+h < C) = Dit. Finally, using

this assumption in Equation 2.11 results in the final Equation 2.12 for SRISK.

SRISKit = max{0 ; kDit − (1 − k)Wit(1 − LRMESit)} (2.12)
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Where LRMESit = −Et(ri
t+1:t+h|rm

t+1:t+h < C) is the Long Run MES, that is, the expec-

tation of the bank equity multiperiod arithmetic return conditional on the systemic event,

in which ri
t+1:t+h is the multiperiod arithmetic return of bank equity between periods t + 1

and t + h. In other words, when a stress scenario occurs, the equity decreases by a rate

called the LRMES. Note from Equation 2.12 that SRISK is higher for banks that are

larger, more leveraged, and with higher sensitivity to market declines.

To estimate LRMES, Engle (2018) proposed a direct approach in which LRMESit =

1 − exp
[
(β̃i

t) log(1 − θ)
]
, where β̃i

t is the nested dynamic conditional beta (DCB) and θ

is the expected drop in the market during a financial distress event11. The initial DCB

approach described by Engle (2016) considers that beta is the product of a correlation

between the bank return and the market return, ρi,m
t , times the standard deviation of the

bank return, σit, and market return, σmt. Because all of these three values are potentially

time-varying, the author estimates them through GJR-GARCH and GARCH-DCC models.

Formally, the DCB estimates of beta is given by 2.13.

β̂i
t = ρi,m

t

 σit

σmt

 (2.13)

We also follow Engle (2018) by building an artificial model that nests both the constant

beta and DCB through Equation 2.14.

ri
t = (ϕ1 + ϕ2β̂

i
t)rm

t + εi
t (2.14)

The estimates of both coefficients are made by assuming a MA(1) GJR-GARCH error

term to construct a weighted least squares (WLS) model12. We would expect ϕ2 = 0 for

a constant beta or ϕ1 = 0 for DCB, but because both hypotheses can be rejected, it is

preferable to consider some combination of constant and time-varying beta (Engle, 2018).

Then, the nested DCB used to estimate LRMES and SRISK is given by 2.15.

β̃i
t = (ϕ̂1 + ϕ̂2β̂

i
t) (2.15)

11Works like Acharya et al. (2012) and Engle (2018) consider θ = 40% over 6 months for the US market, a
measure that is further discussed in Section 2.2.2.2
12The weights are the inverse of the variance of the MA(1) GJR-GARCH model of εi

t (Engle, 2016).
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2.2.1.4 Conditional Value-at-Risk

The conditional value-at-risk (CoVaR) is a concept proposed by Adrian and Brun-

nermeier (2016) and represents the p% quantile of the market return. This quantile is

determined based on the distribution when a specific bank’s return matches its VaR at q%,

given that the preceding state variables are set at M . In other words, it is a measure of

how sensitive the overall market is to a decline in a particular financial institution. First,

the definition of VaR of bank i with probability q, such as 5%, is given by 2.16.

P (ri
t < −V aRq

i,t | Mt−1) = q (2.16)

The CoVaR of the banking system in quantile p when a particular bank i has a market

decline equal to its V aRq
i,t is given by 2.17.

P (rm
t < −CoV aRp,q

m|i,t | ri
t = −V aRq

i,t, Mt−1) = p (2.17)

Adrian and Brunnermeier (2016) define the risk contribution of the bank i to the

overall market as the incremental change in its risk relative to its median state, that

is, ∆CoV aRq
m|i,t = CoV aRq,q

m|i,t − CoV aRq,0.5
m|i,t. In addition, they also proposed the use of

quantile regression for its efficiency and simplicity in estimating CoVaR, evaluating the

estimated equation with the independent variables of interest, which is given by Equation

2.18 and Equation 2.19.

rm
t = αq

i + βq
i ri

t + εt (2.18)

CoV aRq
m|i,t = α̂q

i + β̂q
i V aRq

i,t (2.19)

Therefore, the ∆CoV aRq
m|i,t is then given by Equation 2.20.

∆CoV aRq
m|i,t = β̂q

i (V aRq
i,t − V aR0.5

i,t ) (2.20)

2.2.2 Bank Run Model

In Section 2.2.1, we presented the main systemic risk measures based on market data,

which are limited to listed banks and pose significant challenges for developing economies
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where few banks are publicly traded. Specifically, in the Brazilian context, these measures

can be applied to only 13.19% of banks, raising concerns about the representativeness

and completeness of evaluating the systemic risk of the whole financial system13. To

address this limitation, in this section we present the main contribution of our paper

by proposing a bank run model that accounts for single, or idiosyncratic, probability of

default of banks based on their public balance sheet structure and a systemic risk process

in which additional defaults occur through different channels of contagion.

The two fundamental channels of contagion considered by the literature of financial

stability and systemic risk are: (i) the exposure channel, and (ii) the informational channel

(Greenwood et al., 2015; Paltalidis et al., 2015; Hurd, 2016; Souza et al., 2016; De Bandt

and Hartmann, 2019; Jackson and Pernoud, 2021; Radev, 2022). These fundamental

channels can work in conjunction as well as independently, and we model them through

three different processes: (i) panic due to deposit withdrawals and market similarity, (ii)

interbank network and (iii) funding illiquidity. Several works in the literature focus on

the banking contagion process through one of these three channels14, but few studies

have shown the significant role they all play together in understanding the full effect of

contagion (Paltalidis et al., 2015; Glasserman and Young, 2016; Anderson et al., 2019;

Jackson and Pernoud, 2021). It is with this last understanding that we propose our model.

Our approach follows a similar theoretical framework in which portfolio risk is calculated

in banking organizations and how banking losses are estimated in deposit insurance schemes

(Lehar, 2005; Gupton et al., 2007; De Lisa et al., 2011; Bellini, 2017; O’Keefe and Ufier,

2017; Parrado-Martínez et al., 2019; Matt and Andrade, 2019; Fernández-Aguado et al.,

2022). We implement this model in two distinct scenarios. First, we use a reduced sample

consisting only of listed banks. Second, we utilize a comprehensive sample that includes

all banks covered by the Brazilian DIA. Due to these different samples, the inputs that

determine the exposure at default (EAD) and the contagion process in the probability of

default vary accordingly. The diagram of the structure and steps of our model is shown in

Figure 2.1.

13Because the Brazilian financial market is highly concentrated, as discussed in this paper, although only
13.19% of covered member institutions are listed, they represent 79.89% of total assets. This concentration
is commonly used as an argument to make approximate inferences about the entire system.
14See Martin (2006), Gorton (2010), Greenwood et al. (2015), Robatto (2019) and Gertler et al. (2019) for
panic due to deposit withdrawals and market similarity, Acemoglu et al. (2015), Cabrales et al. (2017)
and Alexandre et al. (2022) for the interbank network and Ferrara et al. (2019) and Ardekani et al. (2020)
for funding illiquidity.
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Figure 2.1: Diagram of the structure and steps of the Bank Run model.

∗ Note: The contagion process amplifies the idiosyncratic probability of default from the Merton (1974)’s
structural model through the mechanisms and shocks described in Section 2.2.2.2. The model input for
EAD varies based on the sample: yellow arrows for listed banks and blue for covered member institutions.
The loss given default (LGD) parameter is set to one for all Brazilian banks, as discussed in Section
2.2.2.3.

In Section 2.2.2.1, we detail the model used to calculate the idiosyncratic probability

of default, which is the same as the one presented in Chapter 1. Then, Section 2.2.2.2

introduces our model designed to account for various channels of contagion. Finally,

Section 2.2.2.3 presents how the loss distribution is computed taking into account the

components of the bank run model.

2.2.2.1 Probability of Default

Following Chapter 1 of this thesis, we utilize the structural model of Merton (1974)

to estimate the idiosyncratic PD for each financial institution (Souza et al., 2015, 2016;

Guerra et al., 2016; Coccorese and Santucci, 2019; da Rosa München, 2022). Recalling

previous definitions and using the Black and Scholes (1973)’s model, the option’s payoff

for the equity holder at time T is given by 2.21.

Eit = max(Ait N (d1it) − DBit e−rtT N (d2it), 0) (2.21)

Where Ait is the asset value, rt is the risk-free interest rate, N (.) is the cumulative normal

distribution function,
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d1it =
ln( Ait

DBit
) + (rt + σ2

Ait

2 )T
σAit

√
T

and

d2it = d1it − σAit

√
T =

ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T

,

in which σAit denotes the volatility of the assets. Thus, the idiosyncratic PDit of a FI in a

time horizon T , calculated in t = 0, is given by 2.22.

PDit = P (DBit ≥ Ait)

= P (ln DBit ≥ ln Ait)

= N (−d2it)

= N

−
ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T


(2.22)

Note that the probability of default is the area under the default barrier, that is, a

fraction of total liabilities.

2.2.2.2 Contagion

The following subsections present our approach for the two fundamental channels

discussed in the literature, which are (i) the exposure channel and (ii) the informational

channel (Greenwood et al., 2015; Paltalidis et al., 2015; Hurd, 2016; Souza et al., 2016;

De Bandt and Hartmann, 2019; Jackson and Pernoud, 2021; Radev, 2022). As in Diamond

and Dybvig (1983), the runs we consider are runs in the entire banking system and not on

a single bank. In addition, as in Abergel et al. (2013), we do not consider the possibility

of partial default in our model15.

We begin by establishing three channels that are used to incorporate the contagion

effect in the event of a bank default: (i) panic due to deposit withdrawals and market

similarity, (ii) interbank network, and (iii) funding illiquidity. Note that these channels

are only activated after a single bank defaults, although they do not necessarily generate

a banking contagion process if the rest of the system is resilient16. The generation of a
15In a model with partial default, represented by a default level on liabilities, it is necessary to introduce a
different mechanism in which the non-defaulting banks have to sell part of their assets in order to satisfy
some solvability ratio constraints. For more information, see Eisenberg and Noe (2001).
16Note that a run on an individual bank may not have aggregate effects if depositors simply shuffle their
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banking contagion process or a systemic risk event occurs when the default of an individual

bank or multiple idiosyncratic defaults deteriorates the other banks in the system through

these channels to the point of generating additional defaults.

An important component to be defined in the simulation of our bank run model is the

deterioration of the probability of default when there is a contagion process or financial

crisis. Engle (2018) estimates a 40% deterioration over 6 months in the PD when there

is a financial distress event for the US market and Greenwood et al. (2015) estimated a

28% deterioration over 18 months in the market capitalization of European banks after

the financial crisis. For this work, utilizing the structural model by Merton (1974), as

described in 2.2.2.1, we estimated the aggregate PD of the Brazilian financial system and

found a 27% deterioration during periods of financial distress17. Therefore, we calibrate

our shocks so that all three contagion processes, as defined by our model, amplify the

average bank default rate by 27%.

2.2.2.2.1 Panic

The extensive literature on banking panics, beginning with Diamond and Dybvig (1983),

emphasizes the phenomenon where sudden withdrawals, triggered by the expectation of

defaults, can force the bank to liquidate many of its assets at a loss and, ultimately, fail.

The subsequent losses worsen the conditions of banks, including those that are financially

strong, reinforcing the flight to liquidity and making the process self-fulfilling. In this

scenario, it is the forced liquidation at fire sale prices during a run that pushes these banks

into bankruptcy, categorizing a situation of short-term illiquidity (Martin, 2006; Gorton,

2010; Greenwood et al., 2015; Kiss et al., 2018; Allen et al., 2019; Robatto, 2019; Anderson

et al., 2019; Gertler et al., 2019).

During such forced short-term liquidation, there is also a contagion effect on asset

prices for other banks that hold assets or portfolios similar to those that suffer from these

fire sales, leading to a deterioration of their balance sheets. If the loss of an affected bank

is so severe that it is unable to meet its minimum capital requirement, then the bank will

funds from one bank to the others in the system (Gertler et al., 2019). Our model captures this dynamic
when the shocks from a contagion process over the PD of banks that do not idiosyncratically default are
not strong enough to lead to additional defaults.
17We constructed a weighted PD considering the value of total deposits of each FI from December 2000 to
September 2022. The 27% is the average deterioration during periods of economic recessions dated by
CODACE (2023). For more information, see Section 3.2.1 and Figure 3.2 of Chapter 3.
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have to sell some of its assets with a haircut, increasing the downward spiral in market

prices (Nier et al., 2007; Cont et al., 2013; Huang et al., 2013; Glasserman and Young,

2016; Caccioli et al., 2018; Pichler et al., 2021).

Considering that panic behavior is fundamentally a problem of depositor expectation

and liquidity risk, with the potential to affect the overall stability of similar banks within the

industry, this matter could be addressed from the complete information on the connection

that each depositor and bank has with all other banks in the system (Brown et al., 2016;

Anginer and Demirgüç-Kunt, 2019; Jackson and Pernoud, 2021). In this context, after

one bank idiosyncratically defaults, the cross-information of depositors and assets could

help anticipate which banks are most susceptible to the panic effect and estimate the

magnitude of this illiquidity shock. However, given the private and confidential nature

of this information, we choose to model this behavior using a cluster approach based on

balance sheets and market data, in which the utilization of information varies depending

on the sample under consideration. Through this approach, our objective is to simulate a

short-term panic shock affecting similar banks within the industry.

We choose to utilize the K-means clustering (Lloyd, 1957; Jancey, 1966; MacQueen,

1967) to estimate the clusters in the banking system. K-means clustering is an unsupervised

learning algorithm for finding K pre-specified clusters and cluster centers (i.e. centroid) in a

set of unlabeled data. Let C1, . . . , CK be the sets containing the indices of the observations

in each banking cluster. These sets satisfy both (i) C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . , n} and (ii)

Ck ∩ Ck′ = ∅ for all k ̸= k′. Thus, (i) means that each observation belongs to at least one

of the K clusters and (ii) means that the clusters are non-overlapping, i.e., no observations

belong to more than one cluster (Hastie et al., 2009).

For instance, if the ith observation is in the kth cluster, then i ∈ Ck. Thus, a good

clustering is one for which the within-cluster variation, W (Ck), is as small as possible.

Therefore, the objective of the K-means algorithm is to solve 2.23.

min
C1,...,CK

{
K∑

k=1
W (Ck)

}
(2.23)

In order to solve 2.23, we first need to define the specification of the within-cluster

variation. The most common choice to define this concept in the literature is the Hartigan

and Wong (1979)’s algorithm, which defines the total within-cluster variation as the

sum of squared Euclidean distances between items and the corresponding centroid. This
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specification is given by 2.24.

W (Ck) =
∑

xi∈Ck

(xi − µk)2 (2.24)

Where xi denotes a vector belonging to the cluster Ck, with xi = {x1i, x2i, . . . , xNi}, where

xji is attribute j of bank i, and µk is the mean value of the points assigned to the cluster

Ck. The algorithm that solves the optimization problem when combining equations 2.23

and 2.24 can be decomposed into two major steps: (i) initially assigns a random number,

from 1 to K, to each of the observations and (ii) iterates until the cluster assignments

stop changing. In the second step, (a) for each of the K clusters, the algorithm computes

the cluster centroid and (b) assigns each observation to the cluster whose centroid is the

closest in terms of Euclidean distance. This algorithm is used iteratively until the local

optimum is reached. (Hastie et al., 2009).

Because the K-means technique requires a pre-specification of the expected number

of clusters, there are a variety of other direct and statistical methods used to define the

within-cluster variation in order to find the optimal number of clusters. The two most

common are the silhouette and the gap statistics. The silhouette statistic (Kaufman and

Rousseeuw, 1990) measures how well an observation is clustered and estimates the average

distance between clusters. A high average silhouette width indicates a good clustering

and the optimal number of clusters K is the one that maximizes the average silhouette

over a range of possible values for K. For observation i, let a(i) be the average distance to

other points in its cluster, and b(i) the dissimilarity between i and its closest clusters to

which it does not belong. Then, the silhouette statistics, s(i), is defined by 2.25.

s(i) = b(i) − a(i)
max{a(i), b(i)} (2.25)

On the other hand, the gap statistic (Tibshirani et al., 2001) compares the total

within-cluster variation for different values of K with their expected values under the null

reference distribution of the data. The estimate of the optimal clusters will be the value

that maximizes the gap statistic, in which log(Wk) falls the farthest below this reference

curve. Thus, considering En[log(Wk)] the expectation under a sample of size n, the gap

statistic is defined by 2.26.
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Gapn(k) = En[log(Wk)] − log(Wk) (2.26)

Once the clustering technique and the optimal number of clusters have been defined, we

select some balance sheet and market data, depending on the sample under consideration,

to distinguish these clusters and simulate the panic behavior in the Brazilian banking

system. It is important, however, that these clusters have an internal consistency with the

prudential segmentation of S1 to S5 and the business model category established by the

BCB (2023a).

The variables used for clustering the reduced sample of listed banks are: (i) total

deposits over total assets, (ii) loan, lease and other credit operations by risk level over

total assets, (iii) RWA, (iv) SRISK, and (v) ∆CoVaR. On the other hand, the variables

used for clustering the full sample are: (i) total deposits over total assets, (ii) loan, lease

and other credit operations by risk level over total assets, (iii) RWA, (iv) CAR, (v) proxy

of the net stable funding ratio, and (vi) prudential segment.

In our simulation of the banking panic process, when one bank within a cluster

idiosyncratically defaults, the other banks in that cluster receive a shock in their probability

of default, as discussed in Section 2.2.2.2. This dynamics continues until all three contagion

processes established by our model converge and increase the default of banks, on average,

by 27%.

2.2.2.2.2 Interbank Network

In addition to the panic effect, several works in the literature emphasize the significant

role of interbank networks in the contagion process of systemic risk, suggesting that

the probability of default cascades increases with the magnitude of interbank exposures

(Anand et al., 2015; Bardoscia et al., 2015; Acemoglu et al., 2015; Silva et al., 2016; Anand

et al., 2018; Anderson et al., 2019; Ferrara et al., 2019). However, it is important to

note that network interconnectedness can be understood by both correlated portfolios,

through common asset holdings among banks, and counterparty risk, through direct

bilateral exposures between banks (Nier et al., 2007; Cont et al., 2013; Huang et al., 2013;

Glasserman and Young, 2016; Pichler et al., 2021; Jackson and Pernoud, 2021). We model

these two phenomena by (i) considering market and asset correlation in the first short-term

contagion channel described in Section 2.2.2.2.1, and (ii) considering the interbank market
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as a second mid-term contagion channel, which is addressed in this section.

In the interbank market, banks lend to each other based on interbank interest rate. In

Brazil, the interbank deposit, known as DI, is a private fixed income instrument traded

exclusively among financial institutions. It plays an important role in assisting banks with

cash management, either as a mechanism for raising funds or allocating surplus resources.

These securities, often referred to as CDI, have high liquidity, no incidence of taxes on

profitability, and carry a very low risk, usually associated with the creditworthiness of the

participating banks in the market. The negotiation between banks determine the DI rate,

which serves as a reference for most of the fixed income securities offered to investors. This

interbank interest rate is the main benchmark of the market and is obtained by calculating

the weighted average of the rates of the prefixed, extragroup (different conglomerates), and

one-day transactions between financial institutions. Furthermore, it is worth noting that,

in the interbank market, banks can also trade one-day repurchase agreement contracts

backed by federal securities with similar purpose of interbank deposit, but shifting the

counterparty risk for sovereign risk (B3, 2023).

Along with its capacity as the monetary, regulatory, and supervisory authority, the

Central Bank of Brazil is also responsible for controlling and monitoring the liquidity of the

banking system. In line with its role as lender of last resort (LOLR), the BCB’s provision

of liquidity support contributes to the credibility of domestic currency and to the financial

system’s stability. The BCB’s liquidity facility (LFL) includes discount window lending

operations, which are based on non-government issued securities with financial institutions

maintaining a reserve or settlement account at the BCB. The LFL’s operations can be a

short-term standing facility (LLI), normally intraday and overnight, or a long-term facility

(LLT), through discretionary approval and enhanced operational process. The loans are

secured against high-quality assets as collateral, which may not present immediate liquidity

(BCB, 2021b).

Considering that the complete information about the Brazilian interbank network

is private and only known by the Central Bank of Brazil, we reconstruct the interbank

network based on the following main properties: (i) density, (ii) average degree, and (iii)

assortativity. Among the several methods available to estimate the matrix of bilateral

exposures18, we employed an adapted version of the minimum density (MD) method

18See, for instance, Anand et al. (2018) for a comprehensive survey of different estimation methods.
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proposed by Anand et al. (2015). We chose this approach because it best aligns with the

actual, known properties of the Brazilian interbank network from March 2010 to September

2015. These known properties are: (i) a density range of [0.03,0.07], (ii) an average degree

between [4.6,7.8] for all banks and [21,26] for large banks, and (iii) an assortativity values

between [-0.31, -0.54]19 (Castro Miranda et al., 2014; BCB, 2016; Souza et al., 2016; Silva

et al., 2016; Anand et al., 2018; Alexandre et al., 2022).

The minimum density method proposed by Anand et al. (2015) is a heuristic proce-

dure for allocating links that combines elements from information theory with economic

incentives to produce networks that preserve the realistic characteristics of interbank

activity. The authors argue that the MD approach is suitable for sparse networks, which is

appropriate for the Brazilian financial market, and is able to reconstruct it by minimizing

its cost of linkages. Let c be the fixed cost of establishing a link, X ∈ [0, ∞)N×N the

matrix of bilateral aggregated exposure values, Xij the unknown exposure of bank i to

bank j and N the number of banks. The total observable interbank assets of bank i are

Ai = ∑N
j=1 Xij and the total observable liabilities of bank j are Lj = ∑N

i=1 Xij. Then, the

MD problem is given by 2.27.

min
X

c
N∑

i=1

N∑
j=1

1[Xij > 0] s.t. (2.27)

N∑
j=1

Xij = Ai ∀i = 1, 2, . . . , N

N∑
i=1

Xij = Lj ∀j = 1, 2, . . . , N

Xij ≥ 0 ∀i, j

Where the integer function 1 equals one only if bank i lends to bank j, and zero otherwise.

This problem is equivalent to finding the network with lowest average degree, i.e., the

lowest number of edges, under given constraints.

However, because 2.27 is computationally expensive to solve, the authors proposed a

19The last official release of the assortativity and degree metric for the Brazilian interbank network made
by the BCB was in April 2016, covering data up to September 2015. All other data come from studies
using the real Brazilian interbank network. For more information, see BCB (2016).
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smooth value function, V (X), which is high whenever the network X has a few links and

satisfies the asset and liability constraints. First, the authors soften the constraints by

assigning penalties for deviations from the marginal of each bank, which is given by 2.28.

ADi ≡
(

Ai −
N∑

j=1
Xij

)
and LDj ≡

(
Lj −

N∑
i=1

Xij

)
(2.28)

In which LDj measures bank j’s current deficit, i.e., how much its bilateral borrowing

falls short of the total amount it needs to raise, Lj, and ADi is measures bank i’s current

surplus. When they are introduced into the objective function 2.27, the problem becomes

a maximization given by 2.29.

V (X) = −c
N∑

i=1

N∑
j=1

1[Xij > 0] −
N∑

i=1
(α2

i ADi) −
N∑

j=1
(δ2

j LDj) (2.29)

Where αi are the weights for assets deviations and δj are the weights for liabilities deviations.

Note that sparse networks X that minimize marginal deviations are more efficient and

achieve higher values in the objective function V (X).

In addition to being sparse, interbank networks are typically disassortative, i.e. small

banks seek to match their lending and borrowing needs through relationships with larger

banks that are well placed to satisfy those needs. Such behavior contributes to sparsity,

since most small banks can satisfy their needs with a single large counterparty. The

authors capture this information through the set of probabilities Q ≡ {Qij} for the relative

relationships between i and j. The probability that i lends to j increases if either i is

a large lender to a small borrower j or i is a small lender to a larger borrower j. This

process is given by 2.30.

Qij ∝ max
{

ADi

LDj

,
LDj

ADi

}
(2.30)

To ensure that the most likely network solutions are disassortative, the authors propose

a probability distribution, P (X), that should be close to the prior Q. This mechanism is

given by 2.31.

max
P

∑
X

P (X)V (X) + θR(P ∥ Q) (2.31)

Where the scaling parameter θ emphasizes the weight placed on finding solutions with
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characteristics similar to the prior matrix Q and R(P ∥ Q) = ∑
X P (X) log(P (X)/Q(X)) is

the relative entropy between P and Q. The solution to this problem can be obtained from

the first-order conditions given by 2.32, stating that a candidate X has a higher likelihood

of being chosen than the prior Q specifies if the departure from Q raises the value of the

maximization problem given by 2.29.

P (X) ∝ Q(X)eθV (X) (2.32)

Note that while the prior Q codifies the probabilities for picking links, there are no

restrictions to the values one should allocate to selected links. However, because each

bank has a maximum exposure limit of 25% of its Tier 1 capital that it can have with

another bank in the Brazilian financial market since the publication of Resolution 4.667 in

July 2018 (BCB, 2018a), we adapted the MD method proposed by Anand et al. (2015) by

including one more step in the iteration process. After the end of each iteration of the

MD procedure, we checked whether the solution exceeded the maximum exposure limit of

each bank’s assets in relation to its Tier 1 capital. Only in cases where the solution have

exceeded is that we limit the asset’s exposure of each bank to 25%, and then we update

the simulated network until the total interbank market volume has been allocated. The

optimal solution is the one that satisfies all these restrictions and produces topological

features that match the moments of the Brazilian interbank network.

In terms of the topological features, the three most important are: (i) density, (ii)

average degree, and (iii) assortativity20. Density is the number of undirected links as a

percentage of the total number of links (excluding self-loops), which can also be seen as the

sparsity of a network. The degree, or valency, is a strictly local measure that corresponds

to the number of counterparties each bank connects in the financial network. Thus, degree

can be interpreted as a proxy of bank’s portfolio diversification inside the financial network.

Since this is a bank-level network measurement, it is common to report the average value

of all participating banks (Souza et al., 2016; Anand et al., 2018).

Assortativity is a global measure of the network that presents the correlation between

the number of counterparties of pairs of banks that have operations with each other. If this

measure is positive, it means that, in the assessed network, banks with many counterparties

usually carry out operations with banks that have many counterparties. On the other

20For more information on topological information of a interbank network, see Silva et al. (2016).
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hand, a negative measure, denoted disassortativity, reveals the predominance of financial

operations between pairs of banks with different total numbers of financial operations.

Usually, large banks, which have many operations and act as money centers, interconnect

with small banks, which have few operations and act as investors or borrowers in the

interbank. Furthermore, financial networks with negative assortativity show the existence

of core-periphery structures. In Brazil, the nucleus is mainly composed of the group of

large banks, whose members are highly connected to other members of the core and also

intermediate operations between members of the periphery (Souza et al., 2016; Silva et al.,

2016; Anand et al., 2018).

Once the interbank network is reconstructed considering all these properties, we proceed

to the estimation of the impact of shock scenarios. This includes considering potential

contagion effects and evaluating the systemic importance of a bank within the network.

Our aim is to understand how stress dynamics within the banking system can resonate

throughout the entire network. Among the different methods proposed by the literature

for this purpose, we opt for the differential DebtRank algorithm (Bardoscia et al., 2015)

for its effective shock propagation dynamics (Souza et al., 2016; Silva et al., 2017; Poledna

et al., 2021).

The original DebtRank algorithm first proposed by Battiston et al. (2012) is inspired by

the feedback centrality measure21 and assumes that losses are linearly propagated between

connected banks. Suppose a network of mutually exposed banks in which each of these

banks has assets and liabilities, among which a fraction is related to the counterparties

within the network, and a capital buffer. If a bank suffer assets losses greater than its

capital buffer, it becomes insolvent and will not be able to honor any of its short-term

liabilities, a scenario in which the bank defaults. On the other hand, if the losses are

lower than its capital buffer, suppose 90%, the bank will be in distress and will not pay its

creditors a proportional part (10%) of its liabilities, which characterizes a stress measure.

In the first case, the creditors of the default bank, in turn, will suffer losses and undergo

through the same dynamics. This feedback process continues until the whole system

converges.
21Feedback centrality measures are those in which the centrality of a node, or vertex, depends recursively
on the centrality of its neighbors. The recursiveness criterion effectively forces the centrality of each node
to depend on the entire network structure through feedforward/feedback mechanism. In this sense, the
original DebtRank of Battiston et al. (2012) is not formally a feedback centrality measure because it does
not propagate a second- and high-order round of impacts that come from cycles or multiple routes in the
network. These components are considered in the differential DebtRank of Bardoscia et al. (2015).
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Formally, the original DebtRank method models the interbank market as a direct

network G = ⟨B, E⟩, in which the banks compose the vertex B and the exposures between

them compose the set of edges E . Again, these links are represented by a weighted

adjacency matrix X, where the (i, j)th entry, Xij, represents the amount bank i lends to

bank j, i.e., the exposure of bank i to bank j. In a similar notation, the total value of the

asset invested by i in funding activities is Ai = ∑
j∈B Xij and the relative economic value

of bank i is given by φi = Ai/
∑

j∈B Aj, φi ∈ [0, 1], which is the fraction of i’s assets with

respect to the total assets in the interbank market.

Also, each bank i has a capital buffer against shocks, Ei, which is represented by the

Common Equity Tier 1 (CET1)22. If Ei ≤ γ, where γ > 0, the bank defaults. If vertex j

defaults, all of the neighbors i will suffer losses corresponding to their exposure towards

j, given by Xij. When Xij > Ei, then vertex i defaults. The local impact of j on i is

Wij = min(1, Vij), where Vij = Xij/Ei is the bank’s stress level, so that if i’s losses exceed

its capital, the local impact is 1. Intermediate values within the interval (0, 1) for Wij lead

i into distress, but not into default.

The presence of cycles in the network inflates the computed impacts by counting the

local impact of a node on another more than once. To avoid the distortion caused by this

double-counting, the original DebtRank algorithm evaluates the additional stress caused

by some initial shock using a dynamic system, allowing only a single impact propagation

per each node. It maintains two state variables for each bank i ∈ B: (i) hi(t) ∈ [0, 1]

and (ii) si(t) ∈ {U, D, I}. hi(t) is the stress level of i and si(t) is a categorical variable

that denotes the state of i. U , D, and I stand for undistressed, distressed, and inactive,

respectively. The update rules of the dynamic system are given by 2.33 and 2.34.

hi(t) = min
1, hi(t − 1) +

∑
j∈D(t)

Wijhj(t − 1)
 (2.33)

22Although Battiston et al. (2012) uses the Tier 1 (the sum of the Common Equity Tier 1 and the
Additional Tier 1) as the capital buffer against shocks, we used only the CET1 as it is the component of
highest quality capital and can absorb losses immediately as they occur (BCBS, 2011). CET1 comprises the
core capital of a bank and consists mostly of issued equity and retained earnings, being used by investors
to assess a bank’s solvency. Even considering the capacity to absorb losses of some AT1 instruments,
which includes noncumulative, nonredeemable preferred stock and related surplus and qualifying minority
interest, they have a lower quality compared to the CET1 instruments, especially in periods of financial
distress (Ramirez, 2017; Couaillier, 2021).

57



si(t) =



D, if hi(t) > 0 and si(t − 1) ̸= I,

I, if si(t − 1) = D,

st(t − 1), otherwise

(2.34)

In which t ≥ 0 and D(t) = {j ∈ B | sj(t − 1) = D}. Note that the sum of 2.33 occurs

only for those distressed banks in the previous iteration. However, once distressed, they

become inactive in the next iteration due to 2.34. Thus, they are not able to propagate

further stress. Observe that the algorithm must converge for a sufficiently large number of

steps T ≫ 1 due to the min(.) operator, which places upper bounds on the bank’s stress

levels, and the non-decreasing property of hi(t), derived from the non-negative entries of

the vulnerability matrix Vij. We compute the resulting DebtRank due to the initial shock

scenario h(0) using equation 2.35.

DR(h(0)) =
∑
i∈B

[
hi(T ) − hi(0)

]
φi (2.35)

Note that, by removing the initial stress h(0) from the DebtRank computation in 2.35,

it conveys the notion of additional stress given an initial shock scenario. However, the

great drawback of this formulation is that it prevents banks from diffusing second- and

high-order rounds of stress. This means that, once a vertex propagates stress, it will not

be able to propagate additional stress due to other subsequent impacts that it receives,

which can lead to a severe underestimation of the stress levels of banks.

To address the limitations of the original DebtRank algorithm, Bardoscia et al. (2015)

introduced an enhancement known as the differential DebtRank. This improved method

still captures cycles or multiple routes in the vulnerability network and, therefore, prevents

double-counting of stress by employing stress differentials between successive iterations.

As a result, at each iteration, banks are only allowed to propagate the stress increase that

they received from the previous iteration. Using this mechanism, financial stress is never

double-counted because differentials are always innovations from one iteration to another.

Again, once a bank default at time t, it no longer propagates financial stress during the

dynamic process for t + k, k > 0. Therefore, substituting the stress levels in 2.33 by stress

differentials results in equation 2.36.
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hi(t) = min
1, hi(t − 1) +

∑
j∈B

Wij∆hj(t − 1)
 (2.36)

Where ∆hj(t − 1) = hj(t − 1) − hj(t − 2) is the stress differential of the bank j in the

previous iteration t − 1 and h(t) = 0 ∀ t < 0. In the beginning of the iteration process,

h(0) is an ex-ante input that denotes the initial stress scenario, or the list of shocks based

on the bank’s probability of default. Thus, we then compute the differential DebtRank

value of an initial shock scenario in 2.35 using the convergent stress values of 2.36.

There are two important dinstinctions between the differential DebtRank of Bardoscia

et al. (2015) compared to the original formulation of Battiston et al. (2012). First, the

sum index in 2.36 runs through all the banks, such that there is no need to maintain states

in the dynamic system. Second, instead of only one propagation immediately after the

shock has been received, they could propagate shocks until all connected banks in the

network default, which makes a formally feedback centrality measure. The dynamics now

reaches global equilibrium only when the direct and indirect neighborhoods of each bank

are considered, taking into account multiple routes and network cycles when establishing

the final stress levels of banks.

2.2.2.2.3 Funding Illiquidity

It is well known in the literature, especially after the GFC, as discussed in this work,

that banks suffer from liquidity and funding risk and the importance of these channels for

the process of contagion and systemic risk. Bank asset and liability structures proved to

be highly vulnerable to deposit runs, market shocks and breakdowns in funding markets

(Acemoglu et al., 2015; Paltalidis et al., 2015; Venkat and Baird, 2016; Ferrara et al., 2019;

Wen et al., 2023).

However, it is important to note the difference between short-term and long-term

liquidity risk and to distinguish their respective roles in the financial contagion process.

Short-term liquidity risk (less than one year) can arise from various sources, such as panic

behavior and asset fire sales, as mentioned in Section 2.2.2.2.1, and the direct exposures

in the interbank network, as mentioned in Section 2.2.2.2.2. On the other hand, long-term

liquidity risk (greather than one year) is related to sufficiently stable sources of funding

or the inability of banks to raise funds when needed, such that longer-term liabilities are

assumed to be more stable than short-term liabilities to mitigate the risk of future funding
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stress (BCBS, 2014; Venkat and Baird, 2016; Ardekani et al., 2020; Wieser, 2022).

Some mechanisms have been created to prevent and mitigate all the risks addressed so

far. The design of a deposit insurance scheme (DIS), for instance, constitutes an integral

part of the financial safety net provided to the banking system and is intended to prevent

runs on individual banks by depositor. If the DIS is credible and depositors expect that

they will receive their money back from the insurance fund, regardless of what other

depositors do or whether they are last in line for reimbursement, then they no longer have

incentives to run and withdraw their funds. In the event of bank failure, it also limits losses

to depositors and reduces the risk that a run on one bank might undermine confidence in

others through contagion effects. Thus, the existence of a credible DIS contributes to the

reduction of the funding cost, especially long-term, of banks (Diamond and Dybvig, 1983;

Allen et al., 2011; Anginer and Demirgüç-Kunt, 2019; Freixas and Parigi, 2019).

The most fundamental deposit insurance scheme is the paybox mandate in which

the deposit insurer is only responsible for the reimbursement of insured deposits. Most

countries with an established DIS have improved its legal and operational characteristics

over time, usually by expanding the mandate and powers and strengthening the role of

the DIS within the financial safety net. (Ognjenovic, 2017; Kerlin, 2017). In Brazil, for

instance, the deposit insurance agency, FGC, is a privately held company and exercises a

paybox plus mandate, in which the additional resolution function (e.g., financial support)

is also attributed to the deposit insurer (BCB, 2018b).

Regarding the Brazilian case, the situation that a private deposit insurer has limited

resources raises the question about the DI’s ability to withstand a strong systemic risk

event. In worst-case scenarios where all available fund resources are consumed, even with

the framework of lender of last resort played by the central bank in order to provide

a potential source of liquidity for banks, the uncertainty about the credibility of the

entire system in this case makes it difficult for financial institutions with poor long-term

liquidity to raise short-term funding in the market, a combination that further increases

their probability of default (Allen et al., 2011; Vazquez and Federico, 2015; Diamond

and Kashyap, 2016; Ognjenovic, 2017; Kerlin, 2017; Ebrahimi Kahou and Lehar, 2017;

Bouwman, 2019).

The Basel Committee on Banking Supervision also created other mechanisms in Basel

III to reduce short-term liquidity risk and long-term financing risk. The two proposed
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quantitative liquidity standards are the Liquidity Cover Ratio (LCR) and the Net Stable

Funding Ratio (NSFR). LCR reflects short-term liquidity soundness and requires banks

to hold sufficient high-quality liquid assets (HQLA) to offset the net cash outflows in a

liquidity stress scenario over 30 days. On the other hand, NSFR requires a minimum

amount of available stable funding (ASF) relative to the required stable funding (RSF)

over a one-year horizon. Both liquidity ratios have a minimum regulatory of 100%. Note

that the implementation of LCR encourages a substitution from long-term illiquid assets to

short-term liquid assets, which consequently eases bank runs. Furthermore, under NSFR

the bank needs to finance illiquid assets with long-term funding, which can alter the bank’s

incentive to use less runnable deposits (BCBS, 2013, 2014; Diamond and Kashyap, 2016;

Ebrahimi Kahou and Lehar, 2017).

As mentioned previously, considering that the different aspects of short-term liquidity

risk are covered in Section 2.2.2.2.1 and Section 2.2.2.2.2, we address the long-term liquidity

risk through the NSFR concept in all scenarios where the available resources from DI are

consumed23. The NSFR equation is given by 2.37.

NSFR = ASF

RSF
(2.37)

Where available stable funding (ASF ) is defined as the portion of capital and liabilities

expected to be reliable over the time horizon and the required stable funding (RSF ) is a

function of the liquidity characteristics and residual maturities of the various assets held

by the bank, as well as those of its off-balance sheet exposures (Chiaramonte et al., 2013;

BCBS, 2014).

Therefore, in order to comply with a minimum regulatory of 100% for NSFR, banks

can either increase their ASF or reduce their RSF. A natural option to increase ASF

is to increase the proportion of long-term funding in the whole portfolio or to increase

the Common Equity Tier 1 (CET1), which is the sum of Common Equity Tier 1 and

Additional Tier 1. On the other hand, a natural option to reduce RSF is to shrink its

balance sheet by changing the composition of its investments and loans or to change its

assets to such combination that would result in a lower weight factor.

Considering that the NSFR is subject to national discretion to reflect jurisdiction-

23In those scenarios where banks suffer from the contagion channels of panic behavior and interbank
network, but the DI still has enough resources to maintain the credibility and confidence in the financial
system, then it can be argued that the remaining banks will not suffer from a long-term liquidity shock.
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specific conditions, the Central Bank of Brazil defined the ILE (structural liquidity ratio)

as its equivalent concept that has been in effect since October 2018 through the Resolution

CMN 4.616 for banks in the S1 prudential segmentation (BCB, 2015, 2022b). However,

because the construction of the ILE requires private and confidential data from each bank,

we follow Takeuti (2020) to create a proxy for our NSFR based on publicly available

balance sheet information24. Tables 2.1 and 2.2 detail each balance sheet data from BCB

(2023a) used to calculate the proxy’s for ASF and RSF.

Table 2.1: Balance sheets accounts used for calculating the ASF proxy.

Factor Composition Description
1.00 [60000002] Equity
1.00 [70000009] Gross Revenues
1.00 [80000006] Gross Expenses
0.90 [41100000] Demand Deposits
0.90 [41200003] Saving Deposits
0.90 [41500002] Time Deposits
0.60 [43000005] Mortgage, real estate and others
0.60 [46000002] Onlending
0.50 [42000006] Repurchase Agreements
Source: Adapted from Takeuti (2020) and the methodological concepts
presented in BCB (2016).

Table 2.2: Balance sheets accounts used for calculating the RSF proxy.

Factor Composition Description
1.00 [19000008] Other Assets
1.00 [14000003] Interbank Transactions
1.00 [15000002] Interbranches Transactions
1.00 [20000004] Fixed Assets
1.00 [23000001] (-) Leased Assests
1.00 [18000009] Other Receivables
0.85 [16000001] Loans
0.65 [23000001] Leased Fixed Assets
0.65 [17000000] Leases
0.40 [13000004] Securities and Derivatives
Source: Adapted from Takeuti (2020) and the methodological concepts
presented in BCB (2016).

24The two works that proposes a proxy for ILE in Brazil, for the best of our knowledge, are Cardoso et al.
(2019) and Takeuti (2020), but we evaluate that the work of Takeuti (2020) is more accurate in terms of
the concept of NSFR.

62



Once the ASF and RSF metrics have been calculated to determine the NSFR proxy for

each bank, we proceed to the simulation of the funding illiquidity risk. The dynamics of

this third and final channel of contagion in the model is such that, in any scenario where the

available resources from Brazilian DIA25 are consumed, either through the reimbursement

of covered deposits from banks that default for idiosyncratic reasons or through the first

two channels described in Section 2.2.2.2.1 and Section 2.2.2.2.2, the remaining banks with

NSFR less than one experience an additional shock to their probability of default. Finally,

these three contagion mechanisms collectively contribute to a 27% average increase in the

bank default rate, as described in Section 2.2.2.2.

2.2.2.3 Loss Distribution

As mentioned in the beginning of Section 2.2.2, our approach follows a similar theoretical

framework in which portfolio risk is calculated in banking organizations and how banking

losses are estimated in deposit insurance schemes (Lehar, 2005; Gupton et al., 2007; De Lisa

et al., 2011; Bellini, 2017; O’Keefe and Ufier, 2017; Parrado-Martínez et al., 2019; Matt

and Andrade, 2019; Fernández-Aguado et al., 2022). Thus, the last part of our model

consists in estimating the loss distribution of the banking system taking into account the

probability of default, the loss given default, and the exposure at default. To this end, we

first define the expected loss (EL) of a given bank i, i = 1, . . . , N , through equation 2.38.

ELit = PDc
it × LGDit × EADit (2.38)

In which PDc
it ∈ [0, 1] represents the final probability of default after the contagion process

has been applied to the idiosyncratic PDit, as defined in Section 2.2.2.1 through equation

2.22. The EADit ∈ [0, ∞) term is given by SRISK in Section 2.2.1.3 for listed banks

in the reduced sample and by a share of covered deposits for the full sample. Lastly,

LGDit ∈ [0, 1] is assumed to be one for all banks in the Brazilian banking system26.

25In our bank run model, the available resources of the DIA correspond to its equity capital. For more
information, see FGC (2023).
26The concept of loss given default can also be understood as the proportion of non-recovery assets, i.e.,
LGDit = 1 − RRit, in which RRit is the recovery rate. Note that in this framework the LGD is absorbed
by the central bank or the deposit insurer of the economy. The assumption of absence of recovery on a
one-year horizon when a bank default in Brazil can be argued considering the following aspects: (i) the
high historical interest rate in Brazil diminishes the present value of futures recoveries, (ii) during the
process of extrajudicial settlements there are mostly poor quality and illiquid assets left, which increases
the time in line for recoveries, and (iii) in periods of financial distress it is even more difficult to liquidate
assets without incurring great losses due to fire sales and market conditions. Therefore, considering
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The construction of the economy’s LDt is the result of a Monte Carlo simulation

over Ls
t for each scenario s through the bank run model, where Ls

t = ∑N
i=1 ELs

it, s =

1, . . . , S and t = 1, . . . , T . The value of S must be large enough to achieve convergence,

which in our case is equal to 100.000. Let N be the number of banks, Φ−1(PDc) :=

[Φ−1(PDc
1t), . . . , Φ−1(PDc

Nt)] the vector of the probit function, or the inverse of the

standard normal cumulative distribution (quantile) function, of each bank’s PD, and

Zs := (zs
1, . . . , zs

N ) ∼ N (0, 1) a vector of random variables for S different scenarios. Under

the assumption of normality over bank asset values (Crouhy et al., 2000; Lehar, 2005;

De Lisa et al., 2011; Guerra et al., 2016; Souza et al., 2016; Bellini, 2017; O’Keefe and

Ufier, 2017; da Rosa München, 2022), the indicator function that generates the vector of

bank’s default Ps
t used to estimate Ls

t for each scenario s is given by 2.39.

Ps
t :=


1, if zs

i ≤ Φ−1(PDc
it) ∀i = 1, . . . , N,

0, otherwise
(2.39)

In this framework, the vector Zs can be understood as the vector of initial shocks that

gives origins to the idiosyncratic default PDit, which will have a different combination of

initial defaults for each s. After this initial shock, all three contagion processes described

in Section 2.2.2 have their own dynamic according to the established criteria. Therefore,

the final vector Ls
t of size 1 × S has different values for each s because the shock vector

Zs is also different for each s. For example, consider that bank i has PDit = 30% and its

associated probit function Φ−1(PDit) = −0.5. If z1
i = −0.6 and z2

i = −0.4, both randomly

drawn from a normal distribution through Monte Carlo simulations, then bank i in time t

will idiosyncratically default in scenario 1 and will not idiosyncratically default in scenario

2. However, if bank i receives one shock of 27% during the contagion process, which gives

PDc
it = 38% and Φ−1(PDc

it) = −0.3, then it will default in both scenarios at the end of

the simulation to construct the loss distribution. Figure 2.2 gives a synthetic illustration

of this default dynamics for each bank in each scenario.

that we are modeling extreme distress events, the combination of all these factors further reduces the
present value of recoveries on a one-year horizon, which underlies the proxy of one for the LGD of the
Brazilian banking system. However, it is important to mention that if one would like to consider asset
recoveries in the event of bank default, we can use the Merton (1974)’s model framework to calculate
LGDit = 1 − (1 − φ)

[
Ait

DBit

N (−d1)
N (−d2)

]
exp (rtT ), in which φ represents administrative costs (Guerra et al.,

2016).
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Figure 2.2: Events of default from a normal distribution.

Once Ls
t is constructed for each s, the LDt is obtained by ordering its values. The

expected loss of LDt corresponds to the average of the simulated scenarios and V aRα
LDt

is

calculated as the quantile α of the distribution. In contrast, the unexpected loss is derived

as the difference between the V aRα
LDt

and the expected loss. Because we are dealing with

extreme events, the vector LDt usually has a positive skew distribution, or a right-skewed

distribution, and leptokurtosis, i.e., fat tails with excess of kurtosis (Gupton et al., 2007;

Bellini, 2017). The representation of a hypothetical loss distribution of the banking system

is shown in Figure 2.3.
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Figure 2.3: Banking system loss distribution.

2.3 Data

For the first sample of listed banks, we utilized quarterly data from December 2000

to September 2022 for all 26 publicly traded Brazilian banks, resulting in a unbalanced

panel data with 1.586 observations. On the other hand, for the second sample of covered

banks, we utilized quarterly data from December 2000 to September 2022 for 244 Brazilian

financial institutions, yielding an unbalanced panel data with 9,653 observations 27. All

balance sheet data employed in this study are publicly provided by the Central Bank

of Brazil (BCB, 2023a), while the daily stock price and market capitalization data were

obtained from Bloomberg for the same period.

Following the data structure presented in Chapter 1, the data set considers financial

conglomerates and independent institutions until December 2014, and the prudential

27Although information is available from 2000:I-2000:III in the database, we used these first three quarters
to calculate assets volatility since bank capital information is available from December 2000. Brazilian
banks (with national headquarters) that are traded on foreign markets were also considered. Also, it is
important to mention that, although we have a data set for 244 Brazilian financial institutions, which
would result in 9.653 observations as in Chapter 1, we work only with a restricted subset that has market
data available.
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conglomerates and independent institutions before March 2015 with the business model

category of b1, b2, b4, and n1, provided there are at least six valid observations in the

studied period. The final data set of listed banks represents 79.89% of total assets, 80.46%

of total credit, 89.71% of total deposits, and 13.19% of total member institutions in

September 2022. For the interest rate, we used public data provided by B3, the Brazilian

financial market infrastructure company (B3, 2023).

To estimate the probability of default on a one-year horizon for each FI using the

Merton (1974)’s structural model, we applied the following variables: adjusted total assets

for A, total liabilities to calculate DB, annualized interbank interest rate DI for r, and the

annualized standard deviation of the logarithmic returns of adjusted total assets, that is,

log(At/At−1), for asset volatility σA. Table 2.3 presents the aggregate descriptive statistics

of these variables for listed banks, Table 2.4 presents the aggregate descriptive statistics

for the covered banks, and all balance sheet accounts are shown in Appendix B.1.
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Table 2.3: Descriptive statistics for listed financial institutions.

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max
ATAa 211.72 418.76 0.04 5.71 137.19 2,184.86
TLa 194.04 387.44 0.00 5.05 123.11 2,018.16
Loansa 89.23 185.98 0.00 2.44 39.73 978.56
DIb 11.19 5.11 1.90 6.93 14.13 26.23
AV 0.28 0.34 0.00 0.09 0.30 3.42
PDb 9.87 16.72 0.00 0.00 13.54 94.93
SRISKa 12.97 36.46 0.00 0.00 2.44 186.96
SESa 9.69 32.37 0.00 0.00 0.64 161.89
Beta 0.86 0.69 −0.59 0.45 1.09 6.01
MES 0.05 0.15 0.00 0.02 0.04 1.42
LRMES 0.30 0.15 −0.30 0.18 0.38 0.93
CoVaR 0.04 0.04 0.00 0.03 0.04 0.28
∆CoVaR 0.01 0.03 0.00 0.00 0.01 0.24
IIa 34.27 84.11 0.00 0.40 17.74 634.07
IDa 1.54 4.83 0.00 0.02 0.69 41.48
TDa 72.68 147.03 0.00 1.71 53.11 854.76
CET1a 10.26 26.70 0.00 0.00 2.37 142.78
TRCa 20.44 38.70 0.00 0.60 14.29 180.30
RWAa 123.00 234.02 0.00 3.62 88.56 1,225.17
DoAb 36.82 20.47 0.00 21.86 52.35 93.64
CoAb 42.04 21.06 0.00 29.30 54.53 97.87
LRb 4.15 8.31 0.00 0.00 7.11 100.00
CARb 20.89 25.04 0.00 14.25 18.73 542.27
NSFR 1.61 19.92 0.15 0.88 1.12 793.98
Notes: The sample period runs from 2000:IV-2021:IV for 26 publicly traded
Brazilian banks. ATA = adjusted total assets; TL = total liabilities; Loans =
loan operations by risk level; DI = interest rate; AV = assets volatility; PD =
probability of default; SRISK = systemic risk metric; SES = systemic expected
shortfall; Beta = market beta; MES = marginal expected shortfall; LRMES =
long-run marginal expected shortfall; CoVaR = conditional value-at-risk; ∆CoVaR
= delta conditional value-at-risk; II = interbank investments; ID = interbank
deposits; TD = total deposits; CET1 = common equity tier I; TRC = total
regulatory capital; RWA = risk-weighted assets; DoA = total deposits over total
assets; CoA = total credit over total assets; LR = leverage ratio; CAR = capital
adequacy ratio (tier I and II) and NSFR = net stable funding ratio.
a In BRL billion.
b In percentage.
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Table 2.4: Descriptive statistics for covered financial institutions.

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max
ATAa 44.78 192.25 0.00 0.34 10.29 2,184.86
TLa 40.77 177.47 0.00 0.26 8.95 2,018.16
Loansa 18.54 84.21 0.00 0.10 3.93 978.56
DIb 10.91 5.18 1.90 6.40 14.13 26.23
AV 0.42 0.41 0.00 0.14 0.58 6.03
PDb 16.20 20.28 0.00 0.02 29.98 99.84
IIa 7.07 36.69 0.00 0.02 1.14 634.07
IDa 0.43 2.13 −0.00 0.00 0.15 41.48
TDa 13.48 65.37 0.00 0.02 2.16 854.76
CET1a 2.51 13.22 −0.05 0.00 0.52 164.12
TRCa 4.69 19.55 0.00 0.08 1.25 201.00
RWAa 26.85 109.74 0.00 0.27 6.61 1,225.17
DoAb 23.86 22.93 0.00 2.21 39.20 93.64
CoAb 45.23 31.33 0.00 17.28 69.83 263.99
LRb 10.11 150.30 −0.06 0.00 10.10 14,640.04
CARb 31.01 40.77 0.38 14.83 30.81 1,151.84
NSFR 1.19 8.13 0.05 0.75 1.20 793.98

Notes: The sample period runs from 2000:IV-2022:III for 244 covered Brazilian
banks. ATA = adjusted total assets; TL = total liabilities; Loans = loan operations
by risk level; DI = interest rate; AV = assets volatility; PD = probability of default;
II = interbank investments; ID = interbank deposits; TD = total deposits; CET1
= common equity tier I; TRC = total regulatory capital; RWA = risk-weighted
assets; DoA = total deposits over total assets; CoA = total credit over total assets;
LR = leverage ratio; CAR = capital adequacy ratio (tier I and II) and NSFR =
net stable funding ratio.
a In BRL billion.
b In percentage.

2.4 Results and Discussion

This section summarizes and discusses the empirical results obtained in three different

exercises. First, we present some statistics on the banks’ risk measures, the contagion

process, and the estimation of the loss distribution of the banking system considering a

reduced sample of only listed banks. Second, we compare the results of the RS with a

full sample that considers all banks covered by the Brazilian DIA. Then, we propose and

discuss an optimized capital adequacy ratio based on this framework considering the RS.
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2.4.1 Banks’ Probability of Default and Contagion Process in

the Reduced Sample

Table 2.5 presents summary statistics for the risk measures estimated to build the LD

of the Brazilian banking system in September 2022 with a RS of the 24 listed banks. The

first risk measure is the PD given by the Merton (1974)’s structural model (structural

probability of default) used to compute the idiosyncratic PD of each bank. The second

measure is the banks’ PD that represents the default rates in the Monte Carlo simulation.

As expected and reflecting the construction of our model, the mean of the structural PD

and the Banks PD without contagion are practically the same and equal to 12.4%. In

addition, also note that the contagion process described in Section 2.2.2.2 increases the

average probability of bank default by 27%.

Table 2.5: Summary statistics of structural PD and banks’ PD with and without contagion
in the reduced sample.

Structural PD
of Merton model (%)

Banks’ probability of default (%)

Panel A: without
contagion process

Panel B: with
contagion process

Mean 12,45 12,42 15,75
Std. Deviation 21,40 5,22 6,49
Minimum 0,00 0,00 0,00
Maximum 83,37 37,50 45,83
Percentiles: 25% 0,00 8,33 12,50

50% 1,99 12,50 16,67
75% 13,34 16,67 20,83

Notes: This table shows statistics of PD estimates for 24 Brazilian banks in September
2022. Structural PD represents the estimates of the Merton (1974)’s model used as an input
for the idiosyncratic PD of each bank. Banks’ PD are the default rates of the sample banks
in the Monte Carlo simulation. In details, Panel A shows summary statistics of Banks’ PD
with only idiosyncratic default (without contagion process). Panel B presents the same
statistics when all the contagion process described in Section 2.2.2.2 are considered.

The clusters of the 24 Brazilian banks for September 2022 are presented in Table 2.6.

We specify four clusters based on the statistics described in Section 2.2.2.2.1 and taking into

account the relative consistency of their size, operation, regulation, and market similarity.

These results were used in the first contagion process (panic) when the idiosyncratic default

of a bank within a cluster causes a shock to the other banks’ PD within the cluster. Note

that banks classified in the S1 prudential segment were clustered in the same group.
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Table 2.6: Cluster segmentation of the Brazilian banking system.

Cluster Bank Ticker DoAb CoAb RWAa SRISKa ∆CoVaR

1

Itaú ITUB4 BZ 38,7 40,3 1225,17 94,44 0,0148
Bradesco BBDC4 BZ 35,9 39,2 988,41 67,18 0,0144
Santander SANB11 BZ 39,7 47,0 637,46 48,44 0,0114
BB BBAS3 BZ 34,7 40,5 1039,39 185,10 0,0136
CEF CXSE3 BZ 34,9 62,7 704,62 168,25 0,0039

2

BTG BPAC11 BZ 26,6 26,3 300,75 0,00 0,0117
XP XP US 17,0 15,5 37,38 0,00 0,0077
B3 B3SA3 BZ 3,8 0,0 0,17 0,00 0,0174
BR Partners BRBI11 BZ 17,4 3,5 2,68 0,00 0,0032
Nordeste BNBR3 BZ 16,2 22,1 78,78 0,46 0,0026

3

Porto Seguro PSSA3 BZ 1,5 96,8 14,76 0,00 0,0093
Alfa BRIV4 BZ 24,4 58,2 19,37 1,67 0,0025
ABC ABCB4 BZ 19,1 49,5 41,35 1,44 0,0114
Amazônia BAZA3 BZ 14,4 52,2 36,72 2,03 0,0044

4

Nubank NU US 86,7 33,7 24,22 0,00 0,0131
Inter BIDI11 BZ 48,8 48,0 24,04 1,18 0,0027
BMG BMGB4 BZ 53,1 52,4 22,99 3,06 0,0076
Modal MODL11 BZ 45,7 19,6 5,51 0,00 0,0023
Pine PINE4 BZ 47,9 30,8 7,23 1,26 0,0055
Banrisul BRSR6 BZ 57,1 41,9 51,56 7,64 0,0099
Banestes BEES4 BZ 54,3 19,3 12,78 2,45 0,0027
Mercantil BMEB4 BZ 71,7 71,3 8,55 0,25 0,0004
Mercado Crédito MELI34 BZ 84,4 22,5 0,89 0,00 0,0018
Est. Sergipe BGIP4 BZ 77,4 46,6 4,97 0,56 0,0029

Notes: This table shows the four estimated clusters for 24 Brazilian banks in September 2022.
DoA = total deposits over total assets; CoA = total credit over total assets; RWA = risk-weighted
assets; SRISK = systemic risk metric; ∆CoVaR = delta conditional value-at-risk.
a In BRL billion.
b In percentage.

The estimated interbank network for the Brazilian economy in September 2022 is shown

in Figure 2.4. The main statistics of our estimated network, such as density, assortativity,

r, and average degree, are 0.31, -0.54 and 14.4, respectively. In terms of comparison, the

density, assortativity and average degree reported by BCB and other works using the true

Brazilian interbank network vary between [0.03,0.07], [-0.31,-0.54] and [4.6,7.8] (or [21,26]

for large banks), respectively, during March 2010 and September 201528 (Castro Miranda

et al., 2014; BCB, 2016; Souza et al., 2016; Silva et al., 2016; Anand et al., 2018; Alexandre

et al., 2022). Note that even considering 13.19% of FIs, the adapted minimum density
28The last release of the assortativity and degree metric of the Brazilian interbank network made by the
BCB was in April 2016 with data until September 2015. All other data comes from works that use the
true Brazilian interbank network. For more information, see BCB (2016).
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method was still able to simulated the expected properties of the Brazilian interbank

network.

Figure 2.4: Estimated interbank network for the Brazilian financial system.

Notes: The size of each financial institution represented in the interbank network reflects the sum of its
interbank investments, interbank deposits and CET1 (Common Equity Tier I) in September 2022. This is
the same weight used by the differential DebtRank algorithm when calculating the process of bank stress
due to interbank contagion.

Because r < 0, the interbank market network is disassortative, indicating that the

Brazilian financial system has highly connected FI’s that are frequently connected to

others with very few connections. This result follows the conclusion of Silva et al. (2016)

and Alexandre et al. (2022), indicating the existence of money centers in which a few large

banks have several connections with the market. This network topology makes the onset

of a default in these money centers directly affect a large portion of the system. Thus,

vulnerable neighbors to these money centers may, in turn, default, leading to a contagion

process throughout the network. Evidence of negative assortativity in financial networks

has also been reported in other empirical studies (Bottazzi et al., 2020).
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Taking into account all the steps of our modeling process, the results of the LD

described in Section 2.2.2.3 for the RS are shown in Tables 2.7 and 2.8. Table 2.7 shows

how many of the 100.000 simulated scenarios have at least one idiosyncratic default (default

scenarios) and how many have at least one contagion default (systemic risk scenarios).

This analysis is separated into systemically important financial institution (SIFI) and non-

systemically important financial institution (N-SIFI)29. This result shows the importance

of the contagion process for our model, as it is present in 57% of the simulated scenarios

with all banks.

Table 2.7: Summary statistics of the loss distribution of the banking system in the reduced
sample.

All banks SIFI N-SIFI
N. of default scenarios 98.820 24.717 74.103
N. of systemic risk scenarios 56.593 14.081 42.512

Notes: This table shows statistics of the loss distribution for 24 Brazilian banks in
September 2022. SIFI stands for systemically important financial institution and N-SIFI
for non-systemically important financial institution. The number of default scenarios
represents the number of scenarios in which at least one bank idiosyncratically default. On
the other hand, the number of systemic risk scenarios represents the number of scenarios
in which at least one bank default due to the contagion process described in Section
2.2.2.2.

In detail, Table 2.8 shows the summary statistics of the LD of the Brazilian banking

system in the RS. This exercise can be seen as the capacity of the Brazilian DIA to

execute its additional resolution function (e.g., financial support) in the paybox plus the

mandate. Panel A shows that, without contagion, the maximum cost of capital shortfall is

close to BRL 131 billion and the one-year probability of Brazilian DIA default is close

to 0.2% when considering only this operation. In the scenario where the DIA reimburses

the covered deposits for N-SIFI in default under its paybox mandate, the maximum cost

approaches BRL 72 billion, with the DIA’s resources being sufficient to accommodate
29The SIFI is defined by the prudential segment 1 and the N-SIFI are defined by the prudential segment 2
up to 5. In accordance with Resolution CMN n.º 4.553/2017, the Central Bank of Brazil segments financial
institutions and other licensed entities into five categories: S1 includes universal banks, commercial banks,
investment banks, foreign exchange banks, and federal savings banks with a size equal to or exceeding 10%
of the GDP or those engaging in relevant international activity; S2 encompasses the same bank categories
as S1 but with a size less than 10% and equal to or exceeding 1% of the GDP, and other institutions with
a size equal to or exceeding 1% of the GDP; S3 is for institutions with a size below 1% but equal to or
exceeding 0.1% of the GDP; S4 consists of institutions with a size less than 0.1% of the GDP; and S5
includes institutions below 0.1% of the GDP that utilize a simplified optional methodology for determining
minimum equity requirements, excluding the banks listed in S1 and S2. For more information, see BCB
(2017).
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the reimbursements of every simulation. Lastly, when considering the cost of all eligible

deposits, the maximum cost is close to BRL 1.46 trillion and the PD is close to 50.6%.

On the other hand, Panel B shows that, with contagion, the maximum cost of capital

shortfall is close to BRL 310 billion and the PD of the DIA is close to 11%. Note that

even the contagion process increases banks’ PD by 27% on average, as reported in Table

2.5, it increases 56 times the DIA’s PD. In scenarios considering the reimbursement of

the covered deposits of the N-SIFI, the maximum cost is approximately BRL 78 billion,

with the DIA maintaining sufficient resources for all simulated scenarios. Finally, when

considering all eligible deposits, the maximum cost is close to BRL 2.2 trillion and the PD

of the DIA is close to 56.3%.
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Table 2.8: Summary statistics of the loss distribution of the banking system with and
without contagion in the reduced sample.

Cost of capital shortfall Cost of eligible deposits Cost of covered deposits
All banks SIFI N-SIFI All banks SIFI N-SIFI All banks SIFI N-SIFI

Panel A: without contagion process
Mean 12,14 11,82 0,32 199,82 149,62 50,20 104,58 78,31 26,27
Percentiles:

0% 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
25% 0,00 0,00 0,00 67,29 23,54 12,20 35,22 12,32 6,38
50% 0,00 0,00 0,00 113,50 55,10 67,29 59,40 28,84 35,22
75% 42,94 41,69 0,00 415,52 344,02 71,50 217,48 180,06 37,42
90% 42,94 42,56 1,25 501,35 411,68 89,66 262,41 215,48 46,93
95% 44,20 42,94 1,64 591,35 497,11 90,79 309,51 260,19 47,52
99% 45,98 42,94 3,03 615,10 514,73 101,19 321,94 269,41 52,96
99,9% 127,50 123,22 4,50 1.324,12 1.209,54 116,49 693,04 633,07 60,97
100,0% 131,16 124,40 7,07 1.459,99 1.325,37 137,56 764,16 693,70 72,00

N. of LOLR scenarios 0.194 0.194 0.00 50.556 41.016 0.721 29.831 26.706 0.00
Panel B: with contagion process

Mean 31,74 31,32 0,43 306,79 239,26 67,54 160,58 125,23 35,35
Percentiles:

0% 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
25% 0,00 0,00 0,00 68,46 22,37 67,29 35,83 11,71 35,22
50% 0,00 0,00 0,00 180,79 107,42 68,41 94,63 56,23 35,81
75% 42,94 41,69 0,39 432,93 343,27 89,66 226,60 179,67 46,93
90% 220,94 218,30 1,44 1.270,74 1.179,70 91,04 665,10 617,45 47,65
95% 220,94 219,31 2,40 1.337,24 1.237,74 99,44 699,91 647,84 52,05
99% 223,35 219,93 3,65 1.362,15 1.251,13 111,86 712,95 654,84 58,55
99,9% 305,89 301,22 5,12 2.175,13 2.051,32 123,30 1.138,47 1.073,66 64,54
100,0% 309,79 302,72 7,07 2.220,18 2.071,09 149,09 1.162,04 1.084,01 78,03

N. of LOLR scenarios 10.901 10.901 0.00 56.291 50.871 2.107 36.091 26.853 0.00

Notes: This table shows statistics of the loss distribution for 24 Brazilian banks in September 2022. SIFI
stands for systemically important financial institution and N-SIFI for non-systemically important financial
institution. Cost of capital shortfall uses the SRISK as the EAD in the process described in Section 2.2.2.3,
while cost of eligible deposits uses the total deposits and cost of covered deposits uses a share θ over the
total deposits. Because the exact covered deposits are not publicly available for each bank, but only the
total covered and eligible deposits of the system, we used the share θ = 52.34% over the total deposits as
a proxy. Panel A shows summary statistics of the banking system LD with only idiosyncratic default
(without contagion process). Panel B presents the same statistics when all the contagion process described
in Section 2.2.2.2 are considered. The number of LOLR scenarios represents the number of scenarios in
which the consumption of resources due to default exceeded the equity of the Brazilian deposit insurance
in all simulations. All values are in BRL billion except for the number of LOLR scenarios.

2.4.2 Banks’ Probability of Default and Contagion Process in

the Full Sample

This section details the exercise of calculating the economy’s expected loss using the

full sample, and compares these findings with those from the reduced sample, as explored

in Section 2.4.1. While the RS considers all 24 listed banks in September 2022, a necessary

condition for calculating the main systemic risk measures in the literature, but with the

downside of representing only 13.19% of the total member institutions in Brazil, this FS

considers all 182 member institutions in its analysis. Since we cannot calculate measures
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such as SRISK and others to discuss the capital shortfall in time of crisis, we focus on

comparing the results of LD in terms of eligible and covered deposits.

Table 2.9 presents summary statistics for the risk measures estimated to build the

LD of the Brazilian banking system with a FS of all member institutions. Compared to

Table 2.5, we can observe, as expected, that our model maintains the average default of

the structural model and preserves the increase of 27% in the average PD, but with a

lower standard deviation. Furthermore, the PD without contagion for this FS, at 13.3%,

closely aligns with the 12.4% in the RS, underscoring the latter’s capacity to capture key

structural elements of the PD across the broader banking system.

Table 2.9: Summary statistics of structural PD and banks’ PD with and without contagion
in the full sample.

Structural PD
of Merton model (%)

Banks’ probability of default (%)

Panel A: without
contagion process

Panel B: with
contagion process

Mean 13,34 13,34 16,97
Std. Deviation 17,17 2,19 2,41
Minimum 0,00 5,00 6,11
Maximum 83,37 23,33 27,78
Percentiles: 25% 0,01 11,67 15,56

50% 4,24 13,33 17,22
75% 25,14 15,00 18,33

Notes: This table shows statistics of PD estimates for 182 covered banks in September 2022.
Structural PD represents the estimates of the Merton (1974)’s model used as input for the
idiosyncratic PD of each bank. Banks’ PD are the default rates of the sample banks in the
Monte Carlo simulation. In detail, Panel A shows summary statistics of Banks’ PD with
only idiosyncratic default (without contagion process). Panel B presents the same statistics
when considering all the contagion process described in Section 2.2.2.2.

Regarding the estimation of the interbank network, the FS database produces a more

adherent result with the moments of the true Brazilian interbank network. While in the

RS the statistics for the density, assortativity and average degree are 0.31, -0.54 and 14.4,

respectively, the statistics in the FS are 0.02, -0.58 and 4.8, respectively. Again, in terms

of comparison, the density, assortativity and average degree reported by BCB and other

works using the true Brazilian interbank network vary between [0.03,0.07], [-0.31,-0.54]

and [4.6,7.8] (or [21,26] for large banks), respectively, during March 2010 and September

2015. Thus, in the FS we are able to better capture the level of density and average degree

when we compare to the true Brazilian interbank network.

76



Taking into account the results of the LD described in Section 2.2.2.3 for the FS, Table

2.10 shows how many of the 100.000 simulated scenarios have at least one idiosyncratic

default (default scenarios) and how many have at least one contagion default (systemic

risk scenarios). Compared with Table 2.7, which focuses on listed banks, our findings

indicate that the dynamics of default and contagion in the FS are more pronounced across

the banking system, particularly for N-SIFI. This aligns with the principles of systemic

importance and the extensive interconnectedness within the banking sector.

Table 2.10: Summary statistics of the loss distribution of the banking system in the
reduced sample.

All banks SIFI N-SIFI
N. of default scenarios 100.000 3.296 96.704
N. of systemic risk scenarios 99.985 3.295 96.690

Notes: This table shows statistics of the loss distribution for 182 Brazilian banks in
September 2022. SIFI stands for systemically important financial institution and N-SIFI
for non-systemically important financial institution. The number of default scenarios
represents the number of scenarios in which at least one bank idiosyncratically default. On
the other hand, the number of systemic risk scenarios represents the number of scenarios
in which at least one bank default due to the contagion process described in Section
2.2.2.2.

Lastly, considering that the RS represents 13.19% of the total member institutions

but 89.71% of the total deposits, we analyze whether the LD constructed using the RS

maintains the proportions of total deposits with respect to the FS. Comparing the results

of the LD for eligible and covered deposits in the FS in Table 2.11 with the results of the

RS in Table 2.8, we can verify that the RS was able to capture only the tails of the LD

(above the 99th quantile), especially for the SIFI, but was unable to correctly capture the

beginning and middle of the distribution. This is because the SIFI’s are common in both

databases, but the RS considers only a smaller portion of the N-SIFI’s.

Note that this exercise in Table 2.11, different from the RS in Table 2.8, which tests

the capacity of additional resolution functions of the DIA, can be seen as the capacity of

the DIA to execute its paybox mandate, that is, to reimburse all covered deposits in the

system. In that sense, Panel A shows that, without contagion, the maximum cost for the

DIA to reimburse the covered deposits of the N-SIFI in default is BRL 156 billion and its

associate PD is close to 1.1%. On the other hand, Panel B shows that, with contagion,

the maximum cost of the N-SIFI is close to BRL 168 billion, where the DIA would default
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in 2.9% of all simulated scenarios.

Table 2.11: Summary statistics of the loss distribution of the banking system with and
without contagion in the full sample.

Cost of elegible deposits Cost of covered deposits
All banks SIFI N-SIFI All banks SIFI N-SIFI

Panel A: without contagion process
Mean 257,91 149,92 107,99 134,99 78,47 56,52
Percentiles:

0% 4,54 0,00 4,54 2,37 0,00 2,37
25% 111,73 35,53 76,21 58,48 18,59 39,89
50% 170,67 59,08 111,58 89,33 30,92 58,40
75% 461,07 325,08 135,99 241,32 170,15 71,18
90% 570,47 412,95 157,52 298,58 216,14 82,45
95% 633,98 461,95 172,03 331,83 241,79 90,04
99% 702,01 500,10 201,91 367,43 261,75 105,68
99,9% 1.378,93 1.145,08 233,85 721,73 599,34 122,39
100,0% 1.579,64 1.282,31 297,33 826,79 671,16 155,62

N. of LOLR scenarios 78.080 38.090 56.067 43.777 26.706 1.069
Panel B: with contagion process

Mean 868,01 745,49 122,52 454,32 390,19 64,12
Percentiles:

0% 12,91 0,32 11,60 6,76 0,17 6,07
25% 820,08 728,88 91,20 429,23 381,49 47,73
50% 920,85 795,79 125,06 481,97 416,51 65,46
75% 1.030,12 878,58 151,54 539,16 459,85 79,31
90% 1.334,48 1.159,94 174,54 698,47 607,11 91,35
95% 1.394,46 1.204,82 189,63 729,86 630,60 99,25
99% 1.457,43 1.236,48 220,95 762,82 647,17 115,65
99,9% 2.131,00 1.875,45 255,55 1.115,37 981,61 133,76
100,0% 2.318,86 1.997,66 321,20 1.213,69 1.045,58 168,12

N. of LOLR scenarios 93.036 84.587 66.352 84.227 83.987 2.893
Notes: This table shows statistics of the loss distribution for 182 Brazilian banks in September 2022. SIFI
stands for systemically important financial institution and N-SIFI for non-systemically important financial
institution. Cost of eligible deposits uses the total deposits and cost of covered deposits uses a share θ over
the total deposits. Because the exact covered deposits are not publicly available for each bank, but only
the total covered and eligible deposits of the system, we used the share θ = 52.34% over the total deposits
as a proxy. Panel A shows summary statistics of the banking system LD with only idiosyncratic default
(without contagion process). Panel B presents the same statistics when all the contagion process described
in Section 2.2.2.2 are considered. The number of LOLR scenarios represents the number of scenarios in
which the consumption of resources due to default exceeded the equity of the Brazilian deposit insurance
in all simulations. All values are in BRL billion except for the number of LOLR scenarios.
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2.4.3 Optimized Capital Requirement

In order to simulate an optimized capital requirement for the Brazilian financial system,

we used a similar theoretical framework in which portfolio risk is calculated in banking

organizations. We also adopted a heterogeneous CR regime in which we have different

CRs for each bank depending on the prudential segment as in Alexandre et al. (2022).

Banks can also hold different levels of capital adequacy ratio based on their own strategy

and balance structure. Through this analysis, we used granular and public balance sheet

information to estimate the PD of each FI as presented in Section 2.2.2.1, the amount of

capital expected in times of crisis (SRISK) presented in Section 2.2.1.3, and the systemic

risk contagion process presented in Section 2.2.2, which models the banking segmentation

cluster to capture bank runs due to panic and market similarity, the interbank network to

estimate the financial contagion in the banking system, and the net stable funding ratio

to capture long-run liquidity shortages.

Thus, we estimated the minimum CR that maintains stable the relationship between

SRISK and the economy’s loss distribution and that takes into account the international

framework of Basel III. The fundamentals of this approach over the LD consider that (i) a

lower CR decreases the CAR hold by banks and the amount of SRISK necessary in the

economy, which also decreases the total cost of bailout by the central bank and the LD,

and (ii) increased the bank’s probability of default, which increases, on the other hand,

the frequency and costs of extrajudicial settlements, and the LD. Therefore, because there

are effects of costs and benefits acting in opposite directions through PD and SRISK,

respectively, the maintenance of the relation between SRISK and LD through several

shocks characterizes an optimized trade-off scenario. To this purpose, we calculated the PD

of the whole system as a weight average of all banks’ PD in relation to its total deposits.

Because the CAR of each bank is the result of total regulatory capital over the risk-

weighted assets, we calculated a two-way fixed effects model to estimate the impact that

the probability of default has over these two variables to reconstruct the individual and

aggregate capital adequacy ratio at every new shock on the bank’s PD. We also controlled

this effect by considering loan operations by risk level, since it is expected that banks may

try to meet a higher capital requirement by either reducing assets, which decreases loan

supply, or increasing the loan interest rate, which leads to a reduction in loan demand

(Thakor, 2014; Alexandre et al., 2022). It is important to mention that we also control
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this reduction in loan demand on its reflection on total deposits. Thus, we are able to

construct a link between our interest variables and also check the individual consistency of

the simulated CAR with the minimum required by Basel III. The results of our equation

estimate that, on average, 1% increase in the bank’s PD reduces total regulatory capital

by 0.10%, increases RWA by 0.12%, and increases loan operations by 0.35%, which also

increases the total deposits by 0.13%30.

Through Figure 2.5 it is possible to observe a more accelerated drop in SRISK in

relation to the LD of the economy as we decrease the CR and CAR of banks. Thus, the

moment when a next marginal drop maintains this relationship relatively stable for the

next simulations and it is in accordance with Basel III framework is characterized as the

optimized CR and CAR. Additional decreases from this point in CR would not bring long-

term benefits in reducing the LD and would continue to increase the burden of a greater

PD for the financial system. Note that this optimization problem is subject to binding

regulatory constraints such that an indefinite reduction in CR would be incompatible with

international accords.

30The complete results are shown in Table B.2 and Table B.3 in Appendix B. It is important to mention
that, although we are simulating the optimized capital requirement for 26 banks that has available market
data, we estimated the average effect considering all 244 Brazilian financial institutions between December
2000 and September 2022, which results in 9.653 observations.
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Figure 2.5: Impact of the capital requirement shock on SRISK/LD and probability of
default.

Notes: CAR stands for capital adequacy ratio and CR for minimal capital requirement, which varies
depending on the bank prudential segment. The blue dashed line represents the threshold in which the
capital requirement of at least one bank would be bellow the minimum required of 8% by Basel III.

Our results show that the optimized capital adequacy ratio for the Brazilian financial

system in September 2022 is close to 13%. Also, the optimized interval for the minimum

capital requirement depending on the prudential segment varies between 8.6% and 10.3%.

Considering that the CAR calculated in our model is 15.9% and the reported by the BCB

(2023b) is 16.15%31, this reduction of 18% in our model implies an optimized CAR in the

entire financial system of 13.2%. Because a lower CAR is expected to lead to a financial

system more fragile and susceptible to systemic risk, the probability of default of the entire

system calculated by our model increases from 9.2% to 17.5%, a variation of 89%.

Taking into account that the percentage of extrajudicial settlements or interventions

made by the BCB on the Brazilian banking market is 8.2%, this positive variation of

89% in the PD implies a probability of default of the entire financial system of 15.5%.

Considering that the PD of the US financial system is 11.9% and the lowest historical

31This indicator measures the capital adequacy of financial institutions in the Brazilian financial system and
is based on the definitions used in the Basel Capital Accord. The scope of the data coverage commercial
banks, universal banks, investment banks, savings banks or any financial conglomerate comprising any
of these entities. For more information, see BCB (2023b) series 21424 (I001 - Regulatory Capital to
Risk-Weighted Assets).
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level of CAR in Brazil since 2000 was 12.9% in May 2001, the level of 15.5% for the

Brazilian PD as a consequence of a CAR of 13.2% can be argued as reasonable in view of

the benefits of a financial system with lower cost for the central bank in a financial crisis

scenario, greater loan supply and lower credit cost32.

In terms of impact of this new CAR, because the simulated capital requirement is

lower, the total amount of capital needed in an extreme financial crisis event would also

be lower. For our data set, which covers 79.89% of total assets but only 13.19% of total

member institutions, we estimate a total cost of bailout in the base scenario (without shock)

between 3.9 and 5.7 times the size of the Brazilian deposit insurance agency. Considering

the scenario with a 18% shock in the CAR, the total cost of bailout would be between 3.4

and 3.933. Therefore, one of the estimated benefits of this new CAR and CR would be

a reduction between 13% and 32% in the cost of bailout. In addition, another positive

estimated impact would be an increase in loan operations by 31.1% and in total deposits

by 11.6%.

It is important to note that the optimized CAR of the system does not necessarily

mean the optimized minimum CR established by the regulator. Banks can hold levels

of regulatory capital ratio higher than the minimum demanded by the Central Bank for

strategic reasons or for expectations about its own portfolio or future macroeconomic

conditions. Thus, considering that in our model we allow a heterogeneous CR regime,

while the official minimum regulatory capital ratio in September 2022 varies between

10.5% and 12.5% depending on the bank prudential segments, the minimum regulatory

capital ratio with a 18% shock would result in a range between 8.6% and 10.3%, which is

compatible with the 8% minimum established by Basel III (BCBS, 2011).

32It is worth to mention that our modeling process share similar premises presented by Alexandre et al.
(2022), but our results do not generate unrealistic minimum CAR for some banks (while the authors
mention results close to 1%, our minimum is close to 9.1%). Furthermore, we also consider several balance
sheet variables of each bank (used to construct our probability of default, systemic risk metrics, clusters,
interbank network, and NSFR) in our model instead of calibrating or assuming baseless values for these
parameters.
33The lower bound of the range is composed by the maximum value of the loss distribution and the
upper bound is composed by the sum of SRISK in the specific scenario. Note that the reduction in the
gap between the lower and upper bound after the shock is a consequence of the increase in PD in the
simulation.
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2.5 Final Remarks

This paper estimates different measures to understand how much systemic risk each

bank brings to the Brazilian market and proposed a bank run model that accounts for

idiosyncratic probability of default of banks and a systemic risk process in which additional

defaults occur through different channels of contagion.

Our approach follows a similar theoretical framework in which portfolio risk is calculated

in banking organizations and in which banking losses are estimated in deposit insurance

schemes. Through this analysis, we used granular and public balance sheet information

to estimate the PD of each FI and the systemic risk contagion process captured through

the channels of (i) panic due to deposit withdrawals and market similarity, (ii) interbank

network, and (iii) funding illiquidity.

Through the application of our model to a reduced sample of 24 listed banks and a full

sample of 182 covered banks for September 2022, we estimate the loss distribution, the PD

of the deposit insurance agency, and the optimized capital adequacy ratio of the Brazilian

banking system. We find that the DI would be able to bailout 80% the system without

contagion in 99.8% of the simulated scenarios and 89.1% when considering the contagion

process in the reduced sample. However, if banks were liquidated and the DI needed to

reimburse covered deposits in worst-case scenarios, the PD of the DI with contagion in

the reduced sample for all banks would be 36.1% and, considering only the N-SIFI, the DI

would be able to reimburse all covered deposits. In the full sample, considering also the

reimbursement of all covered deposits, the DI’s PD would be 84.3% for all banks and 2.9%

for the N-SIFI.

Regarding the optimized capital adequacy ratio, our results show a value close to 13.2%

with a minimum capital requirement interval varying between 8.6% and 10.3% depending

on the prudential segment. This is 18% lower than the practiced in the Brazilian financial

market, but compatible with the 8% minimum established by Basel III. This reduction

would increase loan operations by 31.1% and total deposits by 11.6%, but would also

increase the PD of the banking system from 8.2% to 15.5%.

In terms of application, the results of this paper could also be used to determine the

optimal fund size for a DIA to effectively address widespread bank failure. Furthermore,

it is also possible to customize the framework to incorporate country-specific factors,
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capturing the distinct realities and challenges of each economy. This could be done by

adjusting each trigger and process of the contagion channels. Finally, this paper also shows

the need to consider different channels of contagion and a broader coverage of the banking

system as key elements when designing the overall financial safety net.
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Chapter 3

Bootstrap Estimator Approach to

Financial Stability

3.1 Introduction

After more than a decade since the recent Global Financial Crisis, despite considerable

efforts made to understand the sources of financial stability and systemic risk, a significant

gap still remains in the field (Christiano et al., 2018; De Bandt and Hartmann, 2019).

This is specially the case in developing economies, since these regions often feature a

limited number of publicly traded banks and restricted information, generating challenges

in analyzing the probability of default across all financial institutions.

As explored in Chapters 1 and 2, taking the Brazilian scenario as a case study, which

offers insights applicable to other economies, there is a lack of research in understanding

the determinants of PD in the banking system, encompassing both listed and non-listed

banks (Souza et al., 2015, 2016; Guerra et al., 2016). Considering the composition of the

banking system as of September 2022, where only 24 (13.2%) of the member FIs covered by

the private deposit insurance agency, Fundo Garantidor de Créditos, are publicly listed, the

inclusion of non-listed banks to address the whole system becomes particularly relevant.

To address this gap, the present study introduces the Bootstrap Estimator with Variable

Selection (BEVS), a method that allows for an integrated and broad analysis of the impact

of macroeconomic variables on PD. Through this approach, we aim to provide deeper

insight into the determinants of PD that could inform the development of strategies and

policies designed to improve financial stability. In relation to the broader literature, our
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work is closely related to the strand that integrates different techniques to enhance accuracy

in time series analysis (Petropoulos et al., 2018; Li et al., 2023; Wang et al., 2023).

In our proposed method, we combine techniques such as Lasso regression, Loess

smoothing, and bootstrap aggregation (bagging), showing that this integrated approach

yields improved results compared to those obtained through their individual performance.

In particular, we demonstrate that BEVS outperforms the single Lasso model set as a

benchmark. Our findings indicate that BEVS not only refines the estimate of PD but also

offers a nuanced view of the impact of macroeconomic factors over the study period, such

as a distribution of coefficients and a measure of variable significance through the number

of appearances.

This work is structured into five sections, beginning with this Introduction. Section

3.2 details the theoretical framework with the foundations of BEVS that is employed to

estimate the determinants of the probability of default in the Brazilian banking system.

Section 3.3 describes the data used in our models. Section 3.4 presents the results and a

discussion of our findings, and Section 3.5 concludes with the final remarks of this paper.

3.2 Theoretical Framework

To understand the determinants of the probability of default in the Brazilian financial

system as a case study, in this section, we introduce our Bootstrap Estimator with Variable

Selection. In addition, we also present the construction of the PD and delve into key

concepts of methods such as Lasso, Loess, and bagging.

3.2.1 Probability of Default

Following Chapters 1 and 2 of this thesis, we utilize the structural model of Merton

(1974) to estimate the idiosyncratic probability of default (IPD) for each financial institution.

Using these IPDs, we then compute the aggregate PD for the Brazilian banking system,

weighted by the deposits of individual FIs1 (Souza et al., 2015, 2016; Guerra et al., 2016;

Coccorese and Santucci, 2019; da Rosa München, 2022).

1By weighting the IPD based on individual FI’s deposits, we gain insights into systemic risk and an
institution’s influence within the Brazilian banking sector. Deposits are core liabilities for FIs and delineate
the potential burden on the Brazilian deposit insurance in the event of default.
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Recalling previous definitions and using the Black and Scholes (1973)’s model, the

option’s payoff for the equity holder at time T is given by 3.1.

Eit = max(Ait N (d1it) − DBit e−rtT N (d2it), 0) (3.1)

Where Ait is the asset value, rt is the risk-free interest rate, N (.) is the cumulative normal

distribution function,

d1it =
ln( Ait

DBit
) + (rt + σ2

Ait

2 )T
σAit

√
T

and

d2it = d1it − σAit

√
T =

ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T

,

in which σAit denotes the volatility of the assets.

Thus, the IPDit of a FI in a time horizon T , calculated in t = 0, is given by 3.2.

IPDit = P (DBit ≥ Ait)

= P (ln DBit ≥ ln Ait)

= N (−d2it)

= N

−
ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T


(3.2)

Note that the probability of default is the area under the default barrier, that is, a

fraction of total liabilities. Finally, to calculate our aggregate PD for the entire Brazilian

financial system, we utilize the following expression given by 3.3.

PDt =
∑N

i=1 IPDit × Depositsit∑N
i=1 Depositsit

, ∀t ∈ {1, . . . , T} (3.3)

3.2.2 Least Absolute Shrinkage and Selection Operator

The Least Absolute Shrinkage and Selection Operator (Lasso) is a linear regression

method proposed by Tibshirani (1996, 2011) that performs both variable selection and

regularization, thereby improving the prediction accuracy and interpretability of traditional

linear models. It shrinks some of the coefficients and sets others to zero, combining the
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advantages of subset selection and ridge regression.

Consider the data (xi, yi), i = 1, 2, · · · N , where xi := (x1, · · · , xp)T are the predictor

variables and yi are the responses. Letting β̂ := (β̂1, · · · , β̂p)T , the objective of the Lasso

is to solve 3.4.

arg min
β0,β

{
N∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2
}

s.t.
p∑

j=1
|βj| ≤ t (3.4)

Here, t ≥ 0 s a tuning parameter that determines the amount of regularisation, that is,

the amount of shrinkage that is applied to the estimates. We can also write the Lasso

problem in the equivalent Lagrangian form given by 3.5.

β̂lasso = arg min
β0,β

{
1
2

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2
+ λ

p∑
j=1

|βj|
}

(3.5)

Note that Lasso regression employs an l1 penalty, denoted as ∥β∥1 = ∑ |βj|, which

enforces certain coefficient estimates to be precisely zero when the tuning parameter λ is

sufficiently large. Hence, similar to the best subset selection, Lasso also performs variable

selection. Consequently, models derived from Lasso tend to be more interpretable (sparse

models) compared to those generated by Ridge regression.

Carefully selecting the regularization parameter, denoted as λ, is an important aspect

of utilizing Lasso regression. Making an informed choice for this parameter is essential

for optimizing the model’s performance in terms of prediction accuracy and model inter-

pretability, as it controls the strength of shrinkage and variable selection. However, if

regularization becomes too strong, important variables may be left out of the model, and

coefficients may shrink excessively, which can reduce both predictive power and inference.

Considering this, information criteria such as the Bayesian Information Criterion and the

Akaike Information Criterion may be favored for cross-validation, since they offer the

advantage of faster computation while exhibiting greater stability in small sample sizes.

An information criterion selects the estimator’s regularization parameter by optimizing a

model’s in-sample accuracy while penalizing its effective number of parameters or degrees

of freedom.
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3.2.3 Locally Weighted Regression

Locally weighted regression (Loess), also known as Locally Estimated Scatterplot

Smoothing, is a non-parametric method that enables the fitting of multiple regressions

within local neighborhoods of a dataset. Introduced by Cleveland (1979) and further

developed by Cleveland and Devlin (1988), this technique combines the simplicity of linear

least squares regression with the flexibility of non-linear regression.

The Loess method constructs a function that interprets the deterministic portions of

data variability, analyzing point by point by fitting simple models to localized data subsets.

Consequently, there is no requirement to specify a global function to fit a model to the

data. Instead, it focuses on representing individual data segments, promoting a granular

understanding of data distributions.

In this approach, at each point in the dataset, a low-degree polynomial is fitted to a

subset of the data, using explanatory variable values near the point for which the response

is estimated. The fitting process employs weighted least squares, assigning higher weights

to nearby data points and lower weights to those farther away. The value of the regression

function for each data point is determined by evaluating the local polynomial using the

values of the specific explanatory variables associated with that data point. The Loess

fitting process concludes once the values of the regression function have been computed

for each of the n data points.

For the selection of data subsets in weighted least squares fits, a nearest-neighbors

algorithm is employed. The ’bandwidth’ or ’smoothing parameter’, denoted as α, is a

user-defined input that controls the amount of data used in each local polynomial fit.

Specifically, α represents the fraction of the total n data points used in each local fit.

These data points are selected on the basis of their explanatory variable values, with

a preference for those closest to the point for which the response is estimated. Since a

polynomial of degree k requires at least (k + 1) points for a fit, the smoothing parameter

α must be between (λ + 1)/n and 1, with λ denoting the degree of the local polynomial.

In practice, irregularly spaced local regressions are common when using a fixed span h.

This results in some local estimates (e.g., x0) being based on many points, while others

rely on only a few points. For this reason, it is beneficial to employ a nearest-neighbor

strategy to determine the span for each target of local regressions. To achieve this, we

calculate ∆i(x0) = |x0 − xi| based on the smoothing parameter α and define the span as
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h(x0) = ∆(n×α)(x0). In this context, a span equal to 0.75 of α, for example, implies that

for each local fit, our goal is to utilize 75% of the data defined by α.

The variable α is known as the smoothing parameter because it controls the flexibility

of the Loess regression function. Larger values of α result in a smoother function that

is less sensitive to data fluctuations. As α decreases, the regression function becomes

increasingly aligned with the data. However, using an excessively small value for the

smoothing parameter is not advisable, as it can lead the regression function to capture

random errors in the data.

The local polynomials fit to each subset of the data are typically either of first or second

degree, meaning they are either locally linear or locally quadratic. Using a zero-degree

polynomial transforms Loess into a weighted moving average. Although it is theoretically

possible to employ higher degree polynomials, doing so would result in models that deviate

from the core principles of Loess. Loess operates on the premise that any function within

a small neighborhood can be adequately approximated using a low-order polynomial. This

preference for simplicity aligns with the ease of fitting the data, as high-degree polynomials

tend to overfit and introduce numerical instability.

The weight function assigns the highest weight to the data points closest to the point

of estimation and the lowest weight to those farthest away. This weighting scheme is

rooted in the concept that points in close proximity within the explanatory variable space

are more likely to exhibit a simple relationship than those that are distant. Consequently,

data points closely aligned with the local model exert a more substantial influence on

model parameter estimates, while those less likely to conform to the local model have a

diminished impact on these estimates. In this context, Loess traditionally uses the tri-cube

weight function, defined as 3.6.

W (x) =


(1 − |d|3)3, for |d| < 1,

0, for |d| ≥ 1
(3.6)

where d represents the distance of a given data point from the point on the curve being

fitted, scaled to fall within the range of 0 to 1. However, any other function that meets

the criteria listed in Cleveland (1979) can also be employed2. The weight assigned to a

2Let W be a weight function with the following properties:

1. W (x) > 0 for |x| < 1;
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particular point within a localized data subset is determined by evaluating the distance

weight function in such a way that the maximum absolute distance among all points in

the data subset is normalized to exactly one.

3.2.4 Bagging

Bagging, also called bootstrap aggregation, is a machine learning ensemble algorithm

proposed by Breiman (1996) designed to improve the stability and accuracy of regression

and classification algorithms. In general, this method is used for fitting multiple versions of

a prediction model and then combining (or ensembling) them into an aggregated prediction.

In other words, bagging is an algorithm in which b bootstrap copies of the original training

data are created and new predictions are made by averaging the predictions of the individual

base learners.

Recall that for a set of n independent observations Z1, · · · , Zn, each with a variance of

σ2, the variance of their mean Z̄ is σ2/n. This indicates that the variance is reduced when

averaging a group of observations. Consequently, a straightforward method to decrease the

variance and thereby enhance the prediction accuracy of a statistical learning approach

is to create multiple training sets from the population, construct a separate predictive

model for each set, and then average these predictions. In other words, by calculating

f̂ 1(x), f̂ 2(x), · · · , f̂B(x) using B distinct training sets and then averaging these, we can

obtain a single, low-variance statistical learning model, as indicated by Equation 3.7.

f̂avg(x) = 1
B

B∑
b=1

f̂ b(x) (3.7)

However, this approach is not feasible in most cases, as we typically do not have access

to multiple training sets. Instead, we can employ bootstrapping, which involves drawing

repeated samples from the single available training dataset, doing so with replacement.

In this method, we generate B distinct bootstrapped training datasets. For each of

these, labeled as the bth set, we train our model to obtain f̂ ∗b(x). By averaging all these

predictions, we arrive at a final model as described in Equation 3.8.

2. W (−x) = W (x);

3. W (x) is a non-increasing function for x ≥ 0;

4. W (x) = 0 for |x| ≥ 1.
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f̂bag(x) = 1
B

B∑
b=1

f̂ ∗b(x) (3.8)

This method is particularly effective with unstable, high-variance base learners, which

are algorithms that show significant output variation in response to minor changes in the

training data. However, for more stable algorithms or those with high bias, bagging tends

to yield less improvement in predictions because of their inherent lower variability.

3.2.5 Bootstrap Estimator with Variable Selection

Building on the established frameworks of Lasso, Loess, and bagging techniques, we

integrate these concepts to formulate the Bootstrap Estimator with Variable Selection, or

BEVS. The contribution of BEVS lies in the combination of robust and established methods

that could offer improved results compared to those obtained through their individual

performance3. Thus, in this section, we outline the principal components and procedures

of the BEVS approach, demonstrating its efficiency in analyzing the determinants of the

probability of default in the Brazilian financial system.

There are notable works in the literature that also propose to combine different

techniques to enhance accuracy in time series analysis (Petropoulos et al., 2018; Wang

et al., 2023). For instance, the work of Bergmeir et al. (2016) presents a bagging approach

that first transforms the data using Box-Cox, then decomposes it into trend, seasonal, and

remainder components. They bootstrap the remainder with the Moving Block Bootstrap

(MBB), reintegrate the series, and apply an inverse Box-Cox transformation. This process

generates a random pool of similar bootstrapped time series, each fitted with an optimal

exponential smoothing model selected via bias-corrected AIC, culminating in a median

aggregation of forecasts.

Before exploring in detail the BEVS procedure, Algorithm 1 provides an overview of

its algorithmic structure, which will guide the subsequent discussion.

3We demonstrate this by comparing the performance of Lasso in relation to BEVS.
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Algorithm 1 Bootstrap Estimator with Variable Selection – BEVS
Data: Time series of the probability of default y, number of bootstrap iterations, bootstrap

block size b, maximum number of parameters in Lasso, and size of the dimensionality
reduction;

// 1. Pre-processing
1 Compute the smoothed series, ys, by applying Loess smoothing on the original PD series

y using cross-validation;
2 Construct deviations from the smoothed series, ds, as: ds = y − ys;
3 Transform ds for Circular Block Bootstrapping:
4 for i > N do
5 Xi = Xi mod N

6 X0 = XN

// 2. Bootstrap Process
7 for iteration = 1 to Number of bootstrap iterations do
8 Generate Bootstrapped Subseries:
9 for i = 1 to N do

10 Bi = (Xi, . . . , Xi+b−1)
11 Combine ys with random error blocks from {B1, . . . , BN} to obtain augmented series

ya;
12 Apply Lasso regression on ya incorporating bounded constraints and optimizing the

penalty parameter λ using cross-validation to obtain yl;
13 Assess the model fit yl using the deviance ratio and null deviance.

// 3. Post-Bootstrap Processing
14 From the individual Lasso models yl, construct an ensemble model ye by averaging

coefficients with non-zero values over bootstrap iterations;
15 Examine the distribution of coefficients across all bootstrap samples to identify patterns

or trends;
16 Initiate a dimensionality reduction process on ye with an appearance threshold of 10% to

filter significant features;
17 while not all variables meet threshold do
18 Discard models with variables below threshold
19 Adjust threshold

// 4. Residual Analysis
20 Compute the residuals, r, as: r = y − ye;
21 Perform the following analyses on the residuals ye to validate the model’s performance:

• Goodness-of-Fit tests;

• Error metric calculations;

• Distribution tests;

• Autocorrelation tests.
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Delving into the BEVS procedure, at the beginning we employ the Loess smoothing

technique to delineate the underlying trends in the time series data, which in our case is the

PD. This non-parametric method uses a time trend to recover the underlying dynamics in

the series, capturing specifically the low-frequency variations of the data. In this step, the

smoothing parameter is determined using the generalized cross-validation (GCV) criterion,

which optimizes the bias-variance trade-off to minimize the predictive error on a validation

set.

Following the determination of the optimal smoothing parameter via the Loess tech-

nique, the next step in the BEVS procedure is to construct a residual series for the

bootstrap process. This is achieved by subtracting the smoothed data, derived through the

Loess method, from the original dataset representing the PD. To adapt it for the Circular

Block Bootstrap (CBB) approach (Politis and Romano, 1992), this error term vector,

denoted as Xi, i = 1, . . . , N , where N is the length of the error series, is transformed to

form a circular series by appending a segment of its initial part to the end. Mathematically,

for i > N , the series wraps around such that Xi ≡ Xi( mod N), and, at the starting point, it

holds that X0 ≡ XN . This definition ensures a continuous and seamless transition, forming

a loop where the end reconnects to the beginning, maintaining the intrinsic structure and

dependencies present in the original series.

After creating the circular series, we systematically generate a collection of potential

subseries, each denoted by Bi = (Xi, . . . , Xi+b−1), where b represents the bootstrap block

size holding a uniform number of observations4. This iterative process spans the entire

length of the dataset, assembling a pool of subseries to construct new series based on the

original data. This is achieved by augmenting the Loess smoothed series with error blocks

randomly sampled with replacement from the set of potential subseries {B1, . . . , BN}. Here,

we apply the CBB concept, utilizing the circular nature of the error series to maintain the

temporal dependencies and structures observed in the original data.

In each iteration, the Lasso regression is applied to the newly bootstrapped series

to identify significant predictors, utilizing a penalty to induce sparsity in the parameter

estimates. To embed theoretical reasoning into the regression, the lower and upper bounds

for each independent variable are defined, guiding the estimation within plausible and

4In this study, the PD series comprises 60 observations, leading us to segment it into 7 bootstrap blocks
for a balanced and efficient analysis.
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theoretically grounded ranges5. The regression’s tuning parameter, λ, is optimized through

cross-validation to ensure optimal predictive performance. This process is repeated for a

predetermined number of series6, aiming to capture a robust representation of potential

outcomes and maintain stability in the results. It is important to note that the new series

have a lag adjustment, which involves incorporating lagged values of the smoothed series

into the analysis.

In addition, we derive a set of goodness-of-fit (GOF) metrics in each bootstrap iteration

to evaluate each model performance based on the optimal λ determined through cross-

validation. The central element in this analytical process is the evaluation of the log-

likelihood, derived from the deviance ratio and the null deviance of the dataset (Hastie

et al., 2015). These informations are used to calculate key statistical criteria including

the Akaike Information Criterion (AIC), corrected AIC (AICc), and Bayesian Information

Criterion (BIC)7. These criteria incorporate the number of parameters (non-zero coefficients

at the chosen λ value) and the number of observations, thereby providing a comprehensive

view of the model fit.

After completing the iterative process, we advance to the next phase of the BEVS

procedure, which involves aggregating all individual Lasso models created during the

bootstrapping process into a unified bagged (ensemble) model. This strategy aims to

retain only those coefficients that consistently appear with non-zero values across all the

iterations, thereby accentuating the variables that significantly influence the dependent

variable. Furthermore, we calculate the average coefficient value and analyze a range of

percentiles to understand the distribution of each coefficient across the bootstrap samples,

5To guide the directional relationships between the dependent variable and each of the independent
variables based on theoretical reasoning, we implement bounded constraints on the coefficients during the
Lasso regression. When a negative relationship is expected, we assign a lower bound of negative infinity
and an upper bound of zero to the coefficient estimates, restricting them to non-positive values. Conversely,
for a expected positive relationship, the bounds are established at zero and positive infinity, ensuring
only non-negative estimates. In instances where there is no prior theoretical directional expectation or
where our objective is to empirically determine the sign of the relationship, we opt for a more unrestricted
approach by setting the bounds to negative and positive infinity, allowing the analysis to freely estimate
the optimal coefficient values.
6We found that 1,000 simulations is sufficient to maintain stability in our results. We also perform a
robustness check varying the number of simulations to see its effects on the results, which can be seen in
Table 3.4.
7Both AIC and BIC serve to assess the model’s fit, each from a slightly different theoretical premises. AIC
aims to balance goodness-of-fit with model complexity, penalizing models that have too many parameters
to prevent overfitting. The adjusted version of AIC, called AICc, is more unbiased, making it advantageous
when working with smaller sample sizes. Conversely, BIC favors parsimonious models, imposing stricter
penalties to models with a large number of parameters.
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enabling us to account for the potential pathways the series could follow. This analytical

step includes counting the frequency of non-zero coefficients for each variable in the

ensemble, thereby providing a quantitative measure of its significance in the model.

Following the aggregation process, the BEVS procedure initiates a dimensionality

reduction phase to further optimize the model. During this iterative process, the prevalence

of each variable across the ensemble of Lasso models is assessed, retaining only those

variables that exceed a predefined threshold of appearance in the remaining models8. This

process is conducted iteratively with each cycle discarding the variables that fall below the

threshold and recalibrating the threshold based on the newly reduced model dimension.

The procedure continues until all variables in the model satisfy the appearance threshold,

resulting in a more condensed, yet effective set of predictors. This approach not only

enhances the robustness and efficiency of the predictive framework but also fosters a model

that is both parsimonious and retains substantial predictive power by concentrating on

the most consistently influential variables.

In the final step of the BEVS approach, we employ a detailed analysis of the residuals

derived from the difference of the original series, which in our case is the PD, and

the bagged ensemble model. This important phase involves extensive analysis on both

the complete and the reduced model to evaluate whether the dimensionality reduction

process has created a parsimonious, yet effective model that retains reliable results for the

residuals. We analyze the following robustness pillars9: (i) GOF tests, (ii) error metrics,

(iii) distribution tests, and (iv) autocorrelation tests.

For the GOF tests, we consider several metrics including D2, AIC, AICc, BIC, R2,

and average R210. The metric D2 represents the fraction of deviance explained11. For

8The threshold was set at 10% to ensure that only the most consistently significant variables were retained.
9We do not test for cointegration between the modeled PD series and its derivative ensemble model
because both series are inherently related by design, making the identification of a common stochastic
trend more a reflection of the model’s construction than an expected property. Cointegration typically
implies a long-run equilibrium relationship between non-stationary series, but here, it merely underscores
the ensemble’s dependency on the PD. If the PD were observed rather than modeled, then testing for
cointegration would be more relevant, as it would assess the long-term consistency of predictions with
real-world data.
10In the context of our analysis, R2 is the traditional coefficient of determination calculated using residuals
from the original series versus the ensemble model. In contrast, the average R2 represents the mean of the
R2 values computed for each of the 1,000 individual bootstrapped series, providing an aggregated insight
into their collective performance.
11The name D2 is by analogy with R2, the fraction of variance explained in regression. Its expression
is given by D2 = (Devnull − Devλ)/Devnull, where Devλ is defined as minus twice the difference in
log-likelihood between a model fit with parameter λ and the fully parameterized model, while Devnull is
the null deviance computed for the constant model. For more information, see Hastie et al. (2015).
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the error metrics, we calculate the Mean Absolute Scaled Error (MASE) and the Root

Mean Square Error (RMSE), both of which offer distinct perspectives on the discrepancies

between our predictions and the actual observations. For the distribution tests, we utilize

the Kolmogorov-Smirnov (KS) test to access whether the residuals conform to a normal

distribution. Lastly, for autocorrelation tests, we employ the Ljung-Box test up to the

fourth lag to examine any potential autocorrelation in the residuals.

3.3 Data

To calculate the individual PD and construct the aggregate PD, we utilized quarterly

data from December 2007 to September 2022 for 226 Brazilian financial institutions, yielding

an unbalanced panel data with 7,556 observations. All balance sheet data employed in

this study are publicly provided by the Central Bank of Brazil (BCB, 2023a).

Following the data structure presented in Chapters 1 and 2, the dataset considers finan-

cial conglomerates and independent institutions until December 2014, and the prudential

conglomerates and independent institutions before March 2015 with the business model

category of b1, b2, b4, and n1, provided there are at least six valid observations in the

studied period. The final dataset represents 99.82% of total assets and 99.75% of total

credit of covered member institutions in September 2022, with an average of 98.94% and

99.07% throughout the period, respectively. For the interest rate, we used public data

provided by B3, the Brazilian financial market infrastructure company (B3, 2023).

To estimate the probability of default on a one-year horizon for each FI using the

Merton (1974)’s structural model, we applied the following variables: adjusted total assets

for A, total liabilities to calculate DB, annualized interbank interest rate DI for r, and

the annualized standard deviation of the logarithmic returns of adjusted total assets, that

is, log(At/At−1), for asset volatility σA. Once all IPD are constructed, we build our PD

according to equation 3.3 utilizing the deposits of individual FIs, yielding our final time

series of 60 observations. Table 3.1 presents the aggregate descriptive statistics for these

variables, Figure 3.1 presents the correlation matrix, and all balance sheet accounts and

code variables are shown in Appendix C.3.
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Table 3.1: Descriptive statistics of the dependent and independent variables.

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max
Dependent Variable

ATAa 52.86 215.48 0.00 0.31 11.03 2,184.86
TLa 48.17 198.95 0.00 0.23 9.53 2,018.16
TDa 15.63 73.16 0.00 0.01 2.29 854.76
DIb 9.05 3.83 1.90 6.39 12.60 14.14
AV 0.39 0.36 0.00 0.14 0.55 3.73
IPDb 14.98 19.07 0.00 0.01 27.59 94.93
PDb 5.73 1.10 3.91 4.89 6.30 8.38

Independent Variables
DIb 9.34 3.44 1.90 6.77 11.93 14.14
CPIb 5.97 2.28 2.13 4.50 6.72 11.89
CCIb 126.11 23.76 85.53 107.36 147.99 164.42
CARb 16.85 0.80 15.42 16.33 17.36 18.65
HDtIb 37.54 5.80 24.96 36.02 39.86 49.86
GDb 31.02 9.55 18.88 22.77 39.17 47.98
TDc 12.80 11.64 −2.95 4.81 15.57 42.78
Loansc 13.28 9.04 −3.46 6.31 18.16 34.10
GDPc 1.71 3.84 −10.10 −0.40 3.62 12.40
NSFR 1.04 0.07 0.90 0.98 1.09 1.14
HHIb 0.16 0.01 0.12 0.15 0.17 0.18

Notes: The sample period runs from 2007:IV-2022:III for the Brazilian financial system. ATA
= adjusted total assets; TL = total liabilities; TD = total deposits; DI = interest rate (CDI);
AV = assets volatility; IPD = idiosyncratic probability of default; PD = weighted probability
of default; CPI = broad national consumer price index (IPCA) in 12 months; CCI = consumer
confidence index; CAR = capital adequacy ratio; HDtI = household debt to income; GD
= net public debt (federal government and Central Bank in terms of GDP); Loans = credit
operations outstanding; GDP = gross domestic product at market prices (real growth rate) ;
NSFR = proxy for the net stable funding ratiod and HHI = Herfindahl-Hirschman index for
deposits concentration.
a In BRL billion.
b In percentage.
c In year-over-year (YoY) transformation.
dSee Section 2.2.2.2.3 of Chapter 2 for more details.
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Figure 3.1: Correlation matrix of the dependent and independent variables.

3.4 Results and Discussion

This section investigates the determinants of the PD of the Brazilian banking system

from December 2007 to September 2022, utilizing the BEVS procedure for this purpose.

As detailed in Section 3.2, the PD is calculated using Equation 3.3 by weighting the IPD

of individual FIs based on their deposits, and the application of the BEVS procedure is

outlined in 3.2.5. Figure 3.2 presents the PD series, highlighting both periods of economic

recession, as classified by CODACE (2023), and instances of extrajudicial settlements or

interventions conducted by the BCB.
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Figure 3.2: Probability of default of the Brazilian banking system.

Notes: Areas shaded in gray indicate periods of economic recession as dated by CODACE (2023), while
areas shaded in blue represent periods of extrajudicial settlements or interventions made by the BCB in
the banking sector.

In the initial stage of implementing the BEVS framework, we first apply a Loess fit

to the PD series using cross-validation to capture its underlying trends and specifically

its low-frequency variations, as illustrated in Figure 3.3. Subsequently, we employ the

circular block bootstrap technique to generate 1,000 bootstrapped series, thus preserving

the temporal dependencies and structures inherent in the original PD series. These

bootstrapped series serve as the basis for each Lasso fit and the final bagged model, and

are presented in Figure 3.4.
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Figure 3.3: Loess fit of the probability of default.

Notes: The line in purple represents the Loess fit of the PD in black.

Figure 3.4: Bootstrapped series of the probability of default.

Notes: The lines in gray represent the bootstrap series of the PD in black.

Upon completing the bootstrapping and Loess fitting phases, we construct an ensemble

model named the ‘BEVS model.’ This model aggregates information from all individual

Lasso models generated from the 1,000 bootstrapped series by averaging the non-zero

coefficients, thus mitigating the uncertainty and risk associated with selecting a single
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model, as shown in Figure 3.5. The density distribution of these coefficients, presented in

Figure 3.6, serves as an additional measure to understand the influence of the variables

and the reliability of the coefficients. Specifically, each point on the density plot represents

an estimate derived from one of the 1,000 individual Lasso models. A greater dispersion

around the mean value indicates greater uncertainty in the coefficient estimates, while a

narrower dispersion indicates increased reliability.

Figure 3.5: BEVS and Lasso fit of the probability of default.

Notes: The line in blue represents the BEVS fit of the PD (in black), which is the bagged model of all
Lasso fit in the bootstrapped series (in gray) of the PD.
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Figure 3.6: Density level of BEVS model.

Notes: Each point in time shows the distribution of the BEVS estimation for that particular point. The
color of the distribution is related to the absolute value of the PD, in which the darker the color, the lower
is the related value.

To assess the efficiency of the BEVS model, we compare it with a benchmark single Lasso

model fitted on the original PD series. The coefficient values for both the benchmark Lasso

model and the BEVS models before and after dimensionality reduction are shown in Table

3.2. This table is organized into three panels: Panel A contains the coefficients and values

for the benchmark Lasso model; Panel B presents the BEVS model before dimensionality

reduction; and Panel C shows the BEVS model after dimensionality reduction. The results

of the residuals and other statistical tests for these models are presented in Table 3.3. This

comparative analysis underscores the performance advantages and statistical robustness

achieved by the BEVS approach.

In Table 3.2, it can be observed that, although the average coefficients of the variables

present in both the benchmark Lasso and BEVS models are similar, the BEVS model has

the distinct advantage of showing a distribution of possible coefficient values, illustrated by

the percentile ranges. This feature not only enhances the model’s statistical robustness but

also allows for a more nuanced understanding of each variable’s impact. Specifically, the

range enables us to identify whether a variable’s effect is consistently positive, consistently

negative, or varies in sign, thereby broadening the scope for economic interpretation. Ad-

ditionally, the number of appearances column in the BEVS models serves as a quantitative

measure of variable significance. In particular, variables such as the autoregressive PDt−1,

the interest rate, and total deposits appear consistently across all bootstrapped iterations,
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reinforcing their importance for the estimation process.

When comparing the benchmark Lasso with the BEVS model, it is clear that each

employs a distinct approach to variable selection, generating implications for model

robustness and interpretability. While Lasso produces a single optimal set of coefficients

based on minimizing the residual sum of squares across the entire dataset, BEVS leverages

multiple bootstrap iterations to create an ensemble of models. This ensemble approach

makes BEVS more sensitive to variables with smaller, although non-zero, impacts on the

outcome variable, allowing it to capture marginal effects that may be overlooked by Lasso.

Additionally, BEVS averages out the influence of data outliers or noise, resulting in a

more stable set of variables. Importantly, this stability extends to the distribution of each

coefficient across bootstrap samples, in contrast to Lasso’s single-point estimate approach.

By considering the coefficient distribution, BEVS not only ensures statistical robustness

but also offers a nuanced understanding of the variability in each variable’s impact.

Regarding the economic interpretation of the BEVS model, Table 3.2 shows how

macroeconomic factors exert influence over the PD in the Brazilian banking system. As

expected, we found an increase in the default risks during adverse economic conditions,

as shown by the dynamics of the GDP, inflation, the interest rate, consumer confidence,

household debt, and government debt, with great emphasis on the interest rate due to its

recurrent selection in all models. Additionally, increases in the growth of total deposits and

loans are associated with higher PD, indicating that the acceleration of these portfolios may

reflect a deterioration in the overall risk profile of banks and should be closely monitored.

We also observe results consistent with those detailed in Chapter 1, where a stronger

capital adequacy ratio and higher market concentration are associated with lower PD.

Finally, we also find that the persistence of the PD is significant, ranging from 41% up to

74% in all simulations.

In examining the number of appearances, it is important to address the counterintuitive

impact of NSFR in the BEVS model without dimensionality reduction. Specifically, NSFR

has a positive coefficient of 0.33712 and appears in 8.3% of all simulations, in accordance

with its positive correlation of 22.1% as shown in Figure 3.1. This result is counterintuitive

because, from a regulatory perspective, a higher NSFR should contribute to a safer financial

system. However, in terms of correlation, it is important to note that the NSFR metric

12Note that while the average and 50th percentile coefficients suggest a positive impact of NSFR, a negative
coefficient is observed in less than 5% of the simulations. .

104



became a regulatory requirement in Brazil in October 2018 (BCB, 2022b), and all values

before this date are constructed based on a proxy13. When the correlation is examined

specifically for the period from December 2018 to September 2022, it changes to -22.2%,

aligning more closely with the expected influence of NSFR on financial stability. Section

3.4.2 delves into the theoretical restrictions on variable signs relevant to this case.

As we observed an appearance of 8.3% of NSFR in the model, this aspect of variable

importance is addressed in BEVS through the dimensionality reduction procedure, where

variables appearing in less than 10% of the simulations are candidates for elimination.

Given that NSFR falls under this criterion, all models that incorporate it as an explanatory

variable are excluded from the bagging process, and this procedure continues until all

variables appear in at least 10% of the remaining ones, leading to a more parsimonious

model without compromising the robustness of the results, as shown in Table 3.3. All

figures of the dimensionality reduction process can be found in the Appendix C.

13See Section 2.2.2.2.3 of Chapter 2 for more details.
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Table 3.2: Summary of the benchmark Lasso and the BEVS model with and without
dimensionality reduction.

Variable Average
Coefficient

1st
Percentile

5th
Percentile

50th
Percentile

95th
Percentile

99th
Percentile

Number of
Appearances

Panel A: Benchmark Lasso
Intercept 2.700 - - - - - -
PDt−1 0.643 - - - - - -
DI -0.048 - - - - - -
CCI -0.001 - - - - - -
CAR -0.006 - - - - - -
HDtI 0.016 - - - - - -
TD 0.019 - - - - - -
HHI -4.984 - - - - - -

Panel B: BEVS Without Dimensionality Reduction
Intercept 4.075 2.261 2.744 4.082 5.387 5.915 1,000
PDt−1 0.619 0.412 0.481 0.628 0.719 0.741 1,000
DI -0.062 -0.108 -0.089 -0.060 -0.043 -0.032 1,000
CPI 0.032 -0.010 0.001 0.030 0.073 0.088 150
CCI -0.002 -0.007 -0.005 -0.002 -0.000 -0.000 813
CAR -0.008 -0.046 -0.038 -0.008 0.033 0.058 106
HDtI 0.006 0.000 0.000 0.005 0.017 0.020 360
GD 0.005 0.000 0.000 0.004 0.013 0.022 489
TD 0.012 0.005 0.008 0.012 0.017 0.020 1,000
Loans 0.007 0.000 0.001 0.006 0.020 0.025 287
GDP -0.012 -0.033 -0.026 -0.011 -0.001 -0.000 772
NSFR 0.337 -1.222 0.000 0.254 1.060 1.712 83
HHI -9.243 -16.604 -14.369 -9.313 -3.931 -1.362 990

Panel C: BEVS With Dimensionality Reduction
Intercept 4.110 2.336 2.771 4.105 5.392 5.925 917
PDt−1 0.618 0.410 0.481 0.627 0.718 0.738 917
DI -0.062 -0.111 -0.088 -0.060 -0.043 -0.031 917
CPI 0.031 -0.011 0.000 0.028 0.073 0.089 138
CCI -0.002 -0.006 -0.004 -0.002 -0.000 -0.000 764
CAR -0.008 -0.046 -0.039 -0.008 0.034 0.059 103
HDtI 0.006 0.000 0.000 0.005 0.017 0.020 337
GD 0.005 0.000 0.000 0.004 0.013 0.022 457
TD 0.012 0.005 0.008 0.012 0.017 0.020 917
Loans 0.007 0.000 0.001 0.006 0.020 0.026 274
GDP -0.012 -0.033 -0.026 -0.011 -0.002 -0.000 711
HHI -9.203 -16.491 -14.315 -9.310 -3.900 -1.334 907

Notes: DI = interest rate (CDI); CPI = broad national consumer price index (IPCA) in 12 months; CCI
= consumer confidence index; CAR = capital adequacy ratio; HDtI = household debt to income; GD =
net public debt (federal government and Central Bank in terms of GDP); TD = YoY transformation of
total deposits; Loans = YoY transformation of credit operations outstanding; GDP = YoY transformation
of gross domestic product at market prices (real growth rate) ; NSFR = proxy for the net stable funding
ratio and HHI = Herfindahl-Hirschman index for deposits concentration. All variables are expressed as
a percentage.
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Table 3.3: Statistical metrics for the benchmark Lasso and the BEVS model with and
without dimensionality reduction.

Test Benchmark
Lasso

Full
BEVS

Reduced
BEVS

Ljung-Box (t-1) 0.938 0.051 0.050
Ljung-Box (t-2) 0.994 0.120 0.120
Ljung-Box (t-3) 0.747 0.217 0.218
Ljung-Box (t-4) 0.861 0.269 0.269
KS 0.051 0.318 0.306
D2 0.882 0.894 0.893
AIC -113.006 -101.684 -101.626
AICc -110.853 -99.419 -99.376
BIC -98.346 -87.037 -87.031
MASE 0.825 0.762 0.763
RMSE 0.377 0.323 0.323
R2 0.882 0.913 0.913
Avg R2 0.882 0.894 0.893
Number of Final Predictors 8 13 12
Notes: The specifications for each test are addressed in Section 3.2.5.

3.4.1 Robustness Test

In any statistical model that employs bootstrapping techniques, assessing the stability

of the results under varying parameters is an important step to ensure robustness. This is

especially the case for the BEVS model, which relies on a set of ensemble estimates generated

from multiple bootstrap iterations. To this end, we conducted different robustness tests,

such as (i) varying the number of bootstrap simulations and (ii) varying the bootstrap

block size. This exercise aims to investigate whether the conclusions drawn from the BEVS

model remain consistent when altering these parameters. Specifically, we examine how

changes in (i) and (ii) influence the distribution of coefficients, the significance of variables,

and, ultimately, the model’s ability to reliably estimate the PD in the Brazilian banking

system. The results of exercise (i) are presented in Tables 3.4 and 3.5, and the results of

exercise (ii) are detailed in Tables C.1 and C.2 in Appendix C.

In Tables 3.4 and 3.5, the BEVS model shows stability when varying the number

of bootstrap simulations from 100 to 50,000. Table 3.4 indicates minor fluctuations in

metrics such as autocorrelation, information criteria, and performance measures, enhancing

confidence in the capacity of the model to estimate PD in the Brazilian banking system.
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In Table 3.5, similar consistency is observed in the average coefficients and the frequency

of the variable appearances. Specifically, variables like the intercept and the autoregressive

show almost no variation in their average coefficients or their appearance frequencies across

all bootstrap iterations. The use of 1,000 simulations for the BEVS model is shown to be

effective for stability, computational efficiency, and interpretability, especially with regard

to the number of appearances metric.

Table 3.4: Statistical and performance metrics across different numbers of bootstrap
simulations.

Test Benchmark
Simulation

Simulation
1

Simulation
2

Simulation
3

Simulation
4

Simulation
5

Panel A: Without Dimensionality Reduction
Ljung-Box (t-1) 0.051 0.059 0.053 0.05 0.049 0.049
Ljung-Box (t-2) 0.12 0.129 0.124 0.12 0.119 0.119
Ljung-Box (t-3) 0.217 0.222 0.221 0.216 0.215 0.215
Ljung-Box (t-4) 0.269 0.272 0.27 0.265 0.263 0.263
KS 0.318 0.349 0.377 0.292 0.297 0.304
D2 0.894 0.898 0.895 0.894 0.894 0.894
AIC -101.684 -101.872 -101.785 -101.744 -101.701 -101.752
AICc -99.419 -99.526 -99.495 -99.497 -99.464 -99.52
BIC -87.037 -86.935 -87.047 -87.157 -87.149 -87.213
MASE 0.762 0.757 0.761 0.763 0.763 0.764
RMSE 0.323 0.32 0.322 0.324 0.324 0.324
R2 0.913 0.914 0.914 0.913 0.913 0.913
Avg R2 0.894 0.898 0.895 0.894 0.894 0.894
Number of Final Predictors 13 13 13 13 13 13
Maximum Predictors in Lasso 8 8 8 8 8 8
Dimension Reduction Rate 10% 10% 10% 10% 10% 10%
Number of Bootstrap Blocks 7 7 7 7 7 7
Bootstrap Sample Size 1,000 100 500 5,000 10,000 50,000
Computation Time 1.09 mins 9.87 secs 1.01 mins 9.13 mins 18.04 mins 1.54 hours

Panel B: With Dimensionality Reduction
Ljung-Box (t-1) 0.05 0.059 0.053 0.049 0.049 0.049
Ljung-Box (t-2) 0.12 0.132 0.125 0.12 0.118 0.118
Ljung-Box (t-3) 0.218 0.229 0.223 0.216 0.214 0.214
Ljung-Box (t-4) 0.269 0.28 0.271 0.263 0.26 0.26
KS 0.306 0.304 0.377 0.29 0.29 0.299
D2 0.893 0.897 0.895 0.894 0.894 0.894
AIC -101.626 -101.71 -101.725 -101.709 -101.676 -101.729
AICc -99.376 -99.363 -99.449 -99.469 -99.444 -99.502
BIC -87.031 -86.775 -87.033 -87.149 -87.144 -87.212
MASE 0.763 0.758 0.763 0.762 0.763 0.763
RMSE 0.323 0.32 0.322 0.323 0.324 0.324
R2 0.913 0.914 0.914 0.913 0.913 0.913
Avg R2 0.893 0.897 0.895 0.894 0.894 0.894
Number of Final Predictors 12 12 12 12 12 12
Maximum Predictors in Lasso 8 8 8 8 8 8
Dimension Reduction Rate 10% 10% 10% 10% 10% 10%
Number of Bootstrap Blocks 7 7 7 7 7 7
Bootstrap Sample Size 1,000 100 500 5,000 10,000 50,000
Computation Time 1.09 mins 9.87 secs 1.01 mins 9.13 mins 18.04 mins 1.54 hours

Notes: Number of bootstrap simulations varies between 100 and 50,000.
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Table 3.5: Coefficient and appearance performance across different numbers of bootstrap
simulations.

Benchmark
Simulation

Simulation
1

Simulation
2

Simulation
3

Simulation
4

Simulation
5

Variable A. C. % A. C. % A. C. % A. C. % A. C. % A. C. %
Intercept 4.075 100.0 4.242 100.0 4.124 100.0 4.055 100.0 4.067 100.0 4.059 100.0
PDt−1 0.619 100.0 0.615 100.0 0.618 100.0 0.620 100.0 0.619 100.0 0.620 100.0
DI -0.062 100.0 -0.064 100.0 -0.063 100.0 -0.062 100.0 -0.062 100.0 -0.061 100.0
CPI 0.032 15.0 0.029 15.0 0.030 16.6 0.031 15.3 0.031 14.9 0.030 14.2
CCI -0.002 81.3 -0.002 86.0 -0.002 81.4 -0.002 80.5 -0.002 79.9 -0.002 80.0
CAR -0.008 10.6 0.002 14.0 -0.007 11.2 -0.009 11.1 -0.009 11.1 -0.009 11.3
HDtI 0.006 36.0 0.005 38.0 0.006 35.4 0.006 36.2 0.006 35.5 0.006 35.4
GD 0.005 48.9 0.004 48.0 0.005 48.8 0.005 49.8 0.005 49.6 0.005 49.8
TD 0.012 100.0 0.011 100.0 0.012 100.0 0.012 100.0 0.012 100.0 0.012 100.0
Loans 0.007 28.7 0.008 31.0 0.007 30.4 0.007 26.7 0.007 27.2 0.007 27.2
GDP -0.012 77.2 -0.012 77.0 -0.012 78.2 -0.012 76.0 -0.012 75.7 -0.012 75.5
NSFR 0.337 8.3 0.583 10.0 0.352 7.8 0.408 7.4 0.427 7.4 0.395 7.6
HHI -9.243 99.0 -9.834 100.0 -9.396 99.6 -9.182 99.2 -9.223 99.2 -9.205 99.0
Notes: A. C. = Average Coefficient; % = Number of Appearances as a percentage of total simulations.
Other variables are as previously described.

In Tables C.1 and C.2 presented in Appendix C, we also observe stability and robustness

in the BEVS model when varying block sizes. Autocorrelation, KS measures, and other

performance indicators show minimal variation, confirming the reliability of the model.

Likewise, core variables, such as the intercept and autoregressive terms, remain stable in

their average coefficients and appearance frequencies. These findings collectively indicate

the robustness of the model and validate our choice of a block size that approximates

the square root of the series length, as this balances computational efficiency, desired

statistical properties, and interpretive clarity14 (Demirel and Willemain, 2002).

3.4.2 Theoretical Sign Restrictions

In the analysis presented in Section 3.4, we employed the BEVS procedure without

imposing any sign restrictions on the estimated coefficients. This approach was intended

to estimate the possible signs of the relationships between the macroeconomic variables
14While the square root of the series length, rounded down to the nearest integer, serves as our benchmark
for block size selection, alternative criteria could be employed taking into consideration: (i) statistical
independence, achieved by minimizing inter-block autocorrelation through appropriate block size; (ii)
computational efficiency, balancing the trade-off between block size and processing time; (iii) convergence
behavior, assessing the rate at which estimates stabilize with varying block sizes and focusing on minimizing
the RMSE to ensure more accurate and reliable estimates.; (iv) domain-specific requirements, guiding
block sizes that correspond to inherent temporal structures of the data, such as natural units like months,
quarters, or years, or to its seasonality, thereby enhancing the interpretability of the bootstrap estimates
(Carlstein, 1986; Hall et al., 1995; Lahiri, 1999; Nordman, 2009).
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and the probability of default of the Brazilian banking system in the 1,000 simulated series.

Although these results offer a nuanced understanding of variable impacts, it was observed

that some of the estimated magnitudes are complex due to the broad range of coefficient

values across the quantiles. Thus, to align the model results with economic theory, we

introduce sign restrictions as discussed in Section 3.2.5, aiming to enhance interpretability

while cautiously limiting their scope to minimize model bias toward specific outcomes.

These selected variables and their expected signs are shown in Table 3.6.

Table 3.6: Sign restrictions imposed on variables

Variable Name Variable Description Expected Sign
CPI Broad National Consumer Price Index Positive
CAR Capital Adequacy Ratio Negative
HDtI Household Debt to Income Positive
NSFR Proxy for the Net Stable Funding Ratio Negative
Notes: In cases where a negative relationship is expected, the coefficient estimates are constrained
to the interval [−∞, 0], ensuring non-positive values. Similarly, for expected positive relationships,
coefficients are restricted to [0, +∞], allowing only non-negative estimates. Where no prior di-
rectional expectation exists, coefficients are unrestricted with bounds [−∞, +∞], allowing free
estimation of optimal values. For more details, see Section 3.2.5.

The results of this restricted BEVS model, which incorporates the theoretical sign

constraints as shown in Table 3.6, are summarized in Table 3.7. Note that the application of

sign restrictions has refined the model’s estimates to be more aligned with economic theory.

For instance, in the case of the NSFR variable, the coefficients remain consistently negative

in both models with and without dimensionality reduction, enhancing the variable’s

interpretive clarity. Furthermore, the imposition of sign restrictions led to an increase

in the number of appearances for both NSFR and Loans. Specifically, while Loans was

already part of the model after the dimensionality reduction and merely bolstered its

representation, NSFR, which had fewer initial appearances, achieved the threshold to

remain in the model after the reduction process.

However, the CAR, which is generally considered a significant determinant of a bank’s

probability of default, experienced a decrease in the frequency of its appearances and was

ultimately excluded from the reduced BEVS model after the dimensionality reduction

process. While this exclusion could be attributed to multicollinearity or model overfitting,

the similar statistical metrics between the full and reduced BEVS models, as shown by

metrics such as AIC, BIC, and D2 in Table 3.8, suggest that the full BEVS model may
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still offer valuable insights into the influence of CAR on the probability of default in the

Brazilian banking system.

Table 3.7: Summary of the benchmark Lasso and BEVS models incorporating theoretical
sign restrictions.

Variable Average
Coefficient

1st
Percentile

5th
Percentile

50th
Percentile

95th
Percentile

99th
Percentile

Number of
Appearances

Panel A: Benchmark Lasso
Intercept 3.064 - - - - - -
PDt−1 0.631 - - - - - -
DI -0.053 - - - - - -
CCI -0.001 - - - - - -
CAR -0.015 - - - - - -
HDtI 0.019 - - - - - -
TD 0.020 - - - - - -
GDP -0.005 - - - - - -
HHI -6.537 - - - - - -

Panel B: BEVS Without Dimensionality Reduction
Intercept 4.277 2.485 2.865 4.147 5.967 7.723 1,000
PDt−1 0.582 0.303 0.381 0.607 0.711 0.733 1,000
DI -0.074 -0.136 -0.118 -0.068 -0.048 -0.042 1,000
CPI 0.042 0.000 0.004 0.042 0.094 0.108 353
CCI -0.003 -0.009 -0.006 -0.002 -0.000 -0.000 882
CAR -0.015 -0.040 -0.037 -0.013 -0.000 -0.000 79
HDtI 0.006 0.000 0.000 0.005 0.016 0.019 334
GD 0.012 0.000 0.000 0.011 0.027 0.036 592
TD 0.011 0.003 0.006 0.011 0.017 0.021 1,000
Loans 0.014 0.000 0.001 0.012 0.031 0.039 598
GDP -0.018 -0.045 -0.038 -0.017 -0.003 -0.000 870
NSFR -1.339 -3.843 -3.172 -1.239 -0.070 -0.003 107
HHI -8.445 -15.621 -14.002 -8.626 -2.651 -0.799 955

Panel C: BEVS With Dimensionality Reduction
Intercept 4.283 2.507 2.847 4.141 6.033 7.720 921
PDt−1 0.575 0.293 0.374 0.598 0.708 0.728 921
DI -0.075 -0.136 -0.119 -0.070 -0.049 -0.042 921
CPI 0.042 0.000 0.004 0.042 0.094 0.108 345
CCI -0.003 -0.009 -0.007 -0.003 -0.000 -0.000 805
HDtI 0.006 0.000 0.000 0.005 0.016 0.019 309
GD 0.012 0.000 0.000 0.011 0.028 0.036 568
TD 0.011 0.003 0.006 0.011 0.017 0.021 921
Loans 0.014 0.000 0.001 0.013 0.031 0.039 571
GDP -0.019 -0.046 -0.039 -0.017 -0.003 -0.000 803
NSFR -1.324 -3.846 -3.173 -1.236 -0.066 -0.003 106
HHI -8.426 -15.707 -14.067 -8.565 -2.641 -0.775 876

Notes: DI = interest rate (CDI); CPI = broad national consumer price index (IPCA) in 12 months; CCI
= consumer confidence index; CAR = capital adequacy ratio; HDtI = household debt to income; GD =
net public debt (federal government and Central Bank in terms of GDP); TD = YoY transformation of
total deposits; Loans = YoY transformation of credit operations outstanding; GDP = YoY transformation
of gross domestic product at market prices (real growth rate) ; NSFR = proxy for the net stable funding
ratio and HHI = Herfindahl-Hirschman index for deposits concentration. All variables are expressed as
a percentage.
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Table 3.8: Statistical metrics for the benchmark Lasso and BEVS models incorporating
theoretical sign restrictions.

Test Benchmark
Lasso

Full
BEVS

Reduced
BEVS

Ljung-Box (t-1) 0.980 0.109 0.107
Ljung-Box (t-2) 1.000 0.173 0.167
Ljung-Box (t-3) 0.727 0.282 0.274
Ljung-Box (t-4) 0.835 0.335 0.329
KS 0.034 0.240 0.232
D2 0.885 0.900 0.898
AIC -111.513 -101.043 -100.993
AICc -108.690 -98.244 -98.199
BIC -94.758 -84.901 -84.873
MASE 0.807 0.743 0.746
RMSE 0.371 0.319 0.321
R2 0.885 0.915 0.914
Avg R2 0.885 0.900 0.898
Number of Final Predictors 9 13 12
Notes: The specifications for each test are addressed in Section 3.2.5.

3.5 Final Remarks

This paper proposes the Bootstrap Estimator with Variable Selection procedure to

estimate the determinants of the probability of default of the Brazilian banking system as

a case study over the period from December 2007 to September 2022. In this method, we

combine techniques such as Lasso regression, Loess smoothing, and bagging, showing that

this integrated approach yields improved results compared to those obtained through their

individual performance. Our findings indicate that BEVS not only refines the estimate of

PD but also offers a comprehensive view of the impact of macroeconomic factors over the

study period.

The BEVS model introduces a significant enhancement in time series analysis. It

generates a distribution of coefficients, providing a comprehensive view of variables’

impacts, and utilizes the number of appearances of each variable as a robust measure of

significance. In addition, the ensemble approach improves the detection of marginal effects

often overlooked by single-model methods, while simultaneously neutralizing the influence

of outliers, enhancing overall model stability. Furthermore, dimensionality reduction in
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BEVS leads to a parsimonious, yet effective, model, ensuring efficiency without sacrificing

analytical depth. Beyond the Brazilian banking system, the benefits provided by BEVS

are applicable to a wide range of time series datasets, making it a versatile tool for various

economic and financial applications.

Regarding our results, we contributed to the understanding of how adverse economic

conditions influence the PD of the Brazilian banking system, with interest rates being

an important element in these dynamics. In addition, we find that the growth of total

deposits and loans is associated with higher PD, indicating that the acceleration of these

portfolios may reflect a deterioration in the overall risk profile of banks and should be

closely monitored by the supervisor.

Future research could extend BEVS analysis to multiple economies, offering a compar-

ative study of the variable selection process and the frequency of number of appearances

in diverse macroeconomic environments. Such comparative work could shed light on the

unique economic factors that influence the stability of each region’s banking system. Fur-

thermore, exploring the interaction and relative impacts of these macroeconomic variables

across economies could enhance our understanding of global financial dynamics and inform

cross-border risk management strategies.
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Concluding Remarks

This thesis consists of three self-contained essays that delve into systemic risk and

banking within the Brazilian financial system, examining regulatory impacts, risk con-

tributions of individual banks, and novel approaches to address financial stability. In

Chapter 1, we examine the impact of capital regulation on banks’ probability of default

using the structural model of Merton (1974) and the Z-Score, confirming the importance of

regulatory frameworks such as Basel III in enhancing financial stability. In Chapter 2, we

evaluate the systemic risk contributions of individual banks and propose a bank run model

that accounts for the idiosyncratic probability of default of banks and a systemic risk

process through which additional defaults occur via different channels of contagion. Lastly,

in Chapter 3, we propose the Bootstrap Estimator with Variable Selection procedure to

estimate the determinants of the aggregate probability of default of banks, integrating

techniques such as Lasso regression, Loess smoothing, and bagging.

The implications of our findings should be particularly informative for regulators and

policymakers concerned with the management of financial stability and systemic risk in

emerging markets, especially in terms of understanding the dynamics of systemic risk

propagation through different channels of contagion. In practical terms, our models can

be used to determine the optimal fund size for a Deposit Insurance Agency to effectively

address widespread bank failures. Furthermore, our framework can be customized to

incorporate country-specific factors, thus capturing the unique realities and challenges of

different economies.

The possibilities for future research based on the findings of this thesis are vast. There

are promising avenues in examining how changes in market conditions will affect financial

stability, particularly in light of the growing importance of non-bank financial institutions,

the insurance market, cryptocurrencies, and digital currencies. Additionally, the use of

non-structured data for sentiment analysis and the application of Large Language Models
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(LLMs) could provide valuable perspectives related to the management of systemic risk

and financial stability. Finally, exploring the effects of climate risk on financial stability

could also provide interesting insights as environmental concerns become increasingly

integral to financial and regulatory frameworks.
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Appendix A

Chapter 1

A.1 Capital Requirements Transition

Table A.1: Transition schedule of capital requirements in Brazil.

2013 2014 2015 2016 2017 2018 2019
Principal Capital - Basel III 3.500% 4.000% 4.500% 4.500% 4.500% 4.500% 4.500%
Principal Capital -
Brazil

4.500% 4.500% 4.500% 4.500% 4.500% 4.500% 4.500%

Tier I Capital - Basel III 4.500% 5.500% 6.000% 6.000% 6.000% 6.000% 6.000%
Tier I Capital - Brazil 5.500% 5.500% 6.000% 6.000% 6.000% 6.000% 6.000%
Total Capital Ratio (TCR) -
Basel III

8.000% 8.000% 8.000% 8.000% 8.000% 8.000% 8.000%

TCR - Brazil 11.000% 11.000% 11.000% 9.875% 9.250% 8.625% 8.000%
Additional Fixed Capital -
Basel III

- - - 0.625% 1.250% 1.875% 2.500%

Additional Fixed
Capital - Brazil

- - - 0.625% 1.250% 1.875% 2.500%

Counter-cyclical Additional
Capital - Basel III

- - - Up to 0.625% Up to 1.250% Up to 1.875% Up to 2.5%

Counter-cyclical
Additional Capital -
Brazil

- Up to 0.625% Up to 1.250% Up to 1.875% Up to 2.500% Up to 2.500% Up to 2.5%

TCR + Fixed Additional
Capital - Basel III

8.000% 8.000% 8.000% 8.625% 9.250% 9.875% 10.500%

TCR + Fixed
Additional Capital -
Brazil

11.000% 11.000% 11.000% 10.500% 10.500% 10.500% 10.500%

TCR + Max
Counter-cyclical and Fixed
Additional Capital - Basel
III

8.000% 8.000% 8.000% 9.250% 10.500% 11.750% 13.000%

TCR + Max
Counter-cyclical and
Fixed Additional
Capital - Brazil

11.000% 11.625% 12.250% 12.375% 13.000% 13.000% 13.000%

Notes: This table shows the transition schedule of capital requirements in Brazil according to
Basel III and specific Brazilian regulations. Adapted from BCB (2012).
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A.2 Balance sheets accounts and granular data

Table A.2: Balance sheets accounts.

Variable Composition Description

Adjusted Total Assets
(+)[10000007] Current Assets and Long Term Receivables
(+)[20000004] Fixed Assets
(+)[49908008] Creditor for Advanced Residual Value

Equity

(+)[60000002] Equity
(+)[70000009] Gross Revenues
(+)[80000006] Gross Expenses

Total Liabilities

(+)[40000008] Current and Long Term Liabilities
(+)[50000005] Deferred Income
(+)[60000002] Equity
(+)[70000009] Gross Revenues
(+)[80000006] Gross Expenses

Loan, Lease and Other Credit
Operations by Risk Level (+)[31000000] Loan, Lease and Other Credit

Operations by Risk Level

Gross Interest Income (a)

(+)[71100001] (+)[71200004] (+)[71300007]
(+)[71400000] (+)[71500003] (+)[71910002]
(+)[71915007] (+)[71920009] (+)[71925004]
(+)[71940003] (+)[71945008] (+)[71947006]
(+)[71950000] (+)[71955005] (+)[71960007]
(+)[71965002] (+)[71980001] (+)[71986005]
(+)[71990053] (+)[71990101] (+)[71990125]
(+)[71990156] (+)[71990204] (+)[71990266]
(+)[81400007] (+)[81500000] (+)[81830055]
(+)[81830103] (+)[81830127] (+)[81830158]
(+)[81830206] (+)[81830268] (+)[81915004]
(+)[81940000] (+)[81945005] (+)[81950007]

Total from Credit, Leases,
Securities, Financial Derivative,
BCB Mandatory Reserve Income
and Foreign Exchange Net Income

Interest Expenses (b)

(+)[71300007] (+)[71990307] (+)[71990352]
(+)[71990400] (+)[71990503] (+)[71990606]
(+)[81100008] (+)[81200001] (+)[81300004]
(+)[81400007] (+)[81830309] (+)[81830354]
(+)[81830402] (+)[81830505] (+)[81830550]
(+)[81830608] (+)[81912007] (+)[81960004]

(+)[81980008] (+)[81986002]

Total Expenses of Funding,
Borrowing and Onlending, Lease,
Foreign Exchange Net Income and
Net Loan Loss Provisions

Net Interest Income (c) c = a + b Sum of Gross Interest Income
and Interest Expenses

Net Income (+)[70000009] (+)[80000006] (-)[81956001]
Total of Net Operating Income and
Net Non-operating Income, Income
Tax Expenses and Profit Sharing

Notes: The numbers in the composition column for the dependent variables correspond to the
Cosif balance sheet information, which is the accounting framework for all financial institutions
in the Brazilian financial market. For more information, see BCB (2023a).
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Table A.3: Effects of current and lagged CAR on FI’s PD and Z-Score.

Probability of Default
(1) (2) (3) (4) (5)

Capital Adequacy Ratio −8.3943∗∗ −3.7089∗ −4.5305∗∗ −5.0312∗∗∗ −5.2941∗∗

(3.5424) (2.1385) (2.0131) (1.9495) (2.0862)

Capital Adequacy Ratiot−1 −4.0481∗ −3.1416∗∗ −3.0509∗∗ −2.1769∗∗

(2.2651) (1.2530) (1.4530) (0.9592)

Capital Adequacy Ratiot−2 0.3966 −0.1216 −1.0109
(1.9407) (1.2005) (1.4040)

Capital Adequacy Ratiot−3 0.9082 2.1461
(2.3340) (2.3368)

Capital Adequacy Ratiot−4 −1.4237
(2.0425)

Observations 9,475 9,216 8,944 8,667 8,393
R2 0.0064 0.0057 0.0052 0.0058 0.0066
Adjusted R2 −0.0291 −0.0309 −0.0325 −0.0328 −0.0326
F Statistic 58.8755∗∗∗ 25.2641∗∗∗ 15.0741∗∗∗ 12.0965∗∗∗ 10.7337∗∗∗

Notes: This table presents the two-way fixed effects estimates of the FI’s capital adequacy ratio
on their PD and Z-Score. Both dependent and independent variables are in the natural log.
Robust standard errors double-clustered are in parentheses. ***, **, and * denote statistical
significance at 1%, 5%, and 10%, respectively.
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A.3 Robustness Test

Table A.4: Effects of CAR and performance on FI’s PD and Z-Score.

PD Z-Score
(1) (2) (3) (4) (5) (6)

ROA −1.18∗∗∗ 0.07∗∗∗

(0.35) (0.02)

ROE −0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)

Spread −0.87∗∗∗ 0.06∗∗∗

(0.33) (0.02)

CAR −3.48∗∗∗ −3.39∗∗∗ −3.16∗∗∗ 0.37∗∗∗ 0.40∗∗∗ 0.35∗∗∗

(0.77) (0.65) (0.75) (0.04) (0.04) (0.05)

CARt−1 −0.25 −0.66 −0.85 0.07∗ 0.11∗∗∗ 0.13∗∗∗

(0.78) (0.60) (0.75) (0.04) (0.04) (0.04)

Observations 7,717 9,355 7,800 7,709 9,295 7,761
R2 0.05 0.04 0.05 0.16 0.15 0.16
Adjusted R2 0.01 0.00 0.01 0.12 0.12 0.12
F Statistic 140.34∗∗∗ 122.82∗∗∗ 133.44∗∗∗ 463.85∗∗∗ 547.41∗∗∗ 455.43∗∗∗

Notes: This table presents the two-way fixed effects estimates of the FI’s capital requirement
and performance on their PD and Z-Score. CAR = capital adequacy ratio (tier I and II); ROA
= return on assets and ROE = return on equity. All variables are in the natural log except PD
and ROE. Robust standard errors double-clustered are in parentheses. ***, **, and * denote
statistical significance at 1%, 5%, and 10%, respectively.
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Appendix B

Chapter 2

B.1 Balance sheets accounts and granular data

Table B.1: Balance sheets accounts.

Variable Composition Description

Adjusted Total Assets
(+)[10000007] Current Assets and Long Term Receivables
(+)[20000004] Fixed Assets
(+)[49908008] Creditor for Advanced Residual Value

Equity

(+)[60000002] Equity
(+)[70000009] Gross Revenues
(+)[80000006] Gross Expenses

Total Liabilities

(+)[40000008] Current and Long Term Liabilities
(+)[50000005] Deferred Income
(+)[60000002] Equity
(+)[70000009] Gross Revenues
(+)[80000006] Gross Expenses

Loan, Lease and Other Credit
Operations by Risk Level (+)[31000000] Loan, Lease and Other Credit

Operations by Risk Level
Interbank Investments (+)[12000005] Liquidity Interbank Investments
Interbank Deposits (+)[41300006] Interbank Deposits
Demand Deposits (+)[41100000] Demand Deposits
Saving Deposits (+)[41200003] Saving Deposits
Time Deposits (+)[41500002] Time Deposits
Notes: The numbers in the composition column for the dependent variables correspond to the
Cosif balance sheet information, which is the accounting framework for all financial institutions
in the Brazilian financial market. For more information, see BCB (2023a).
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B.2 Additional Analysis

Table B.2: Effects of capital adequacy ratio and loans on FI’s PD.

Probability of Default
Capital Adequacy Ratio −9.2193∗∗∗

(3.2585)

Loans 2.4771∗

(1.4439)

Observations 8,780
R2 0.0148
Adjusted R2 −0.0222
F Statistic 63.7530∗∗∗

Notes: This table presents the two-way fixed effects estimates of the FI’s
capital adequacy ratio and loan operations by risk level on their PD. The
equations uses quarterly data from December 2000 to September 2022 for
244 Brazilian financial institutions, resulting in public 9.653 observations
provided by the Central Bank of Brazil (BCB, 2023a). All variables are in the
natural log. Robust standard errors double-clustered are in parentheses. ***,
**, and * denote statistical significance at 1%, 5%, and 10%, respectively.
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Table B.3: Effect of loans on FI’s total deposits.

Total Deposits
Loans 0.3727∗∗∗

(0.0665)

Observations 7,665
R2 0.0962
Adjusted R2 0.0602
F Statistic 784.5530∗∗∗

Notes: This table presents the two-way fixed effects estimates of the FI’s
loan operations by risk level on their total deposits. The equations uses
quarterly data from December 2000 to September 2022 for 244 Brazilian
financial institutions, resulting in public 9.653 observations provided by
the Central Bank of Brazil (BCB, 2023a). All variables are in the natural
log. Robust standard errors double-clustered are in parentheses. ***, **,
and * denote statistical significance at 1%, 5%, and 10%, respectively.
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B.3 Codes

Listing B.1: Adapted minimum density method in R language.

1

2 min_dens_ improved _fs = function (rowsums , colsums , c = 1, lambda = 1, k

= 100 , alpha = 1/sum( rowsums ), delta = 1/sum( rowsums ), theta = 1,

remove .prob = 0.01 , max.it = 100000 , abs.tol = 0.001 , verbose = TRUE ,

target _pr_max =25, round_ matrix =FALSE , matrix _ moments = FALSE)

3 {

4 emp_ results = data.table ()

5 a = rowsums

6 l = colsums

7 if ( lambda > 1 | lambda < 0)

8 stop(" lambda must be between 0 and 1")

9 n = length (a)

10 X = matrix (0, n, n)

11 mindex <- matrix (1: length (X), n, n)

12 mu = 1: length (X)

13 mu = mu[mu != diag( mindex )]

14 v = numeric (0)

15 ad = a - rowSums (X)

16 ld = l - colSums (X)

17 probs = Q(ad , ld , n)

18 if ( verbose )

19 cat(" Starting Minimum Density estimation .\n\n")

20 for (t in 1: max.it) {

21 if (t > k)

22 lambda <- 1

23 if (( runif (1) < remove .prob && t > 1 && length (v) > 0) ||

24 sum(probs[mu]) == 0) {

25 ij = sample (v, 1)

26 index <- which( mindex == ij , arr.ind = T)

27 i <- index [1]

28 j <- index [2]

29 ad[i] = ad[i] + X[ij]

30 ld[j] = ld[j] + X[ij]

31 X[ij] = 0

32 mu = c(mu , ij)
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33 v = v[v != ij]

34 }

35 else {

36 ci <- sample .int( length (mu), 1, prob = probs[mu])

37 ij = mu[ci]

38 index <- which( mindex == ij , arr.ind = T)

39 i <- index [1]

40 j <- index [2]

41 Xnew = X

42 Xnew[ij] <- lambda * min(ad[i], ld[j])

43 adnew = ad

44 adnew[i] = adnew[i] - Xnew[ij]

45 ldnew = ld

46 ldnew[j] = ldnew[j] - Xnew[ij]

47 dif = V(Xnew , adnew , ldnew , c = c, alpha = alpha , delta = delta) -

V(X, ad , ld , c = c, alpha = alpha , delta = delta)

48 comp1 = dif > 0

49 comp2 = exp(theta * dif) > runif (1)

50 if (comp1 || comp2) {

51 X = Xnew

52 ad = adnew

53 ld = ldnew

54 v = c(v, ij)

55 mu = mu[mu != ij]

56 }

57 }

58 probs = Q(ad , ld , n)

59

60 ### Adding modifications ###

61

62 if ( matrix _ moments ) {

63 for (i in 1: nrow(X)) {

64 aux5 = X[i,]

65 aux8 = (aux5/PR_T1[i])*100

66 aux8 = rep_inf_na(aux8) ; aux8 = rep_na_0( aux8)

67 aux11 = ifelse (aux8 > target _pr_max , (PR_T1[i]* target _pr_max/100) ,

aux5)

68 if (PR_T1[i]==0) {

69 aux11 = rep (0, length (aux5))
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70 }

71 X[i,] = aux11

72 }

73

74 if (round_ matrix ) {

75 X = round(X ,0) }

76 matrix _temp = graph_from_ adjacency _ matrix (X, weighted = T)

77 matrix _den = edge_ density ( matrix _temp)

78 matrix _ assort = assortativity _ degree ( matrix _temp)

79 matrix _ degree = mean( igraph :: degree ( matrix _temp))

80

81 } else {

82 matrix _den = 0

83 matrix _ assort = 0

84 matrix _ degree = 0

85 }

86

87 ### Finishing the modifications ###

88

89 if ( verbose )

90 cat("- Iteration number : ", t, " -- total alocated : ", round (100 *

(sum(a - ad)/sum(a)), 6), " %", " | Dens: ",round( matrix _den ,4) ," |

Assort : ",round( matrix _assort ,4) ," | Grau:",round( matrix _degree ,4) , "

\n",sep = "")

91

92 ### Adding modifications ###

93 stacked _ results _aux = data.table( Iteration = t,Total_ Allocated =round

(100*(sum(a - ad)/sum(a)) ,6),Density = matrix _den , Assort = matrix _assort ,

Degree = matrix _degree ,PR_ Target = target _pr_max)

94 stacked _ results = rbind( stacked _results , stacked _ results _aux)

95

96 ### Finishing the modifications ###

97

98 if (sum(abs(ad) - 0) < abs.tol)

99 break

100 }

101 if ( verbose ) {

102 if (t >= max.it)

103 cat("\ nMaximum number of iterations reached ! Change the max.it
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parameter or other settings .\n")

104 cat("\ nMinimum Density estimation finished .", "\n * Total Number of

Iterations : ", t, "\n * Total Alocated : ", round (100 * (sum(a - ad)/

sum(a)), 6), " % \n", sep = "")

105 }

106 rownames (X) <- colnames (X) <- names( rowsums )

107 return (list( Matrix = X, Resultados _ Empilhados = emp_ results ))

108 }

109

110 V = function (z, ad , ld , c = 1, alpha = 1, delta = 1)

111 -c*sum(z > 0) - sum (( alpha ^2)*ad) - sum (( delta ^2)*ld)

112

113 Q = function (ad , ld , n){

114 Q = rep.int(ad , n)/rep(ld , each = n)

115 index = (Q < 1 | is.na(Q)) # Q < 1/Q

116 Q[index] = (1/Q)[index]

117 Q[is.na(Q) | is. infinite (Q)] = 0

118 return (Q) }

Notes: The original R Statistical Software (R Core Team, 2022) code is publicly available in the

NetworkRiskMeasures package published by Cinelli and Silva (2022). The authors implemented

the Minimum Density method based on Anand et al. (2015). All significant changes to the

original code begin at line 60.
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Appendix C

Chapter 3

C.1 Dimensionality Reduction Procedure

Figure C.1: Bootstrapped series of the probability of default with dimensionality reduction.

Notes: The lines in gray represent the bootstrap series of the PD in black. The lines in orange represents
the removed bootstrapped series in the dimensionality reduction process.
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Figure C.2: BEVS and Lasso fit of the probability of default with dimensionality reduction.

Notes: The line in blue represents the BEVS fit of the PD (in black), which is the bagged model of all
Lasso fit in the bootstrapped series (in gray) of the PD. The solid lines in orange represents removed
models in the dimensionality reduction process. The dashed line in orange represents the BEVS fit after
the dimensionality reduction.

Figure C.3: Density level of BEVS model with dimensionality reduction.

Notes: Each point in time shows the distribution of the BEVS estimation for that particular point after
the dimensionality reduction process. The color of the distribution is related to the absolute value of the
PD, in which the darker the color, the lower is the related value.
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C.2 Robustness Test

Table C.1: Statistical and performance metrics across different numbers of bootstrap
blocks.

Test Benchmark
Simulation

Simulation
1

Simulation
2

Simulation
3

Simulation
4

Simulation
5

Panel A: Without Dimensionality Reduction
Ljung-Box (t-1) 0.051 0.051 0.048 0.046 0.046 0.043
Ljung-Box (t-2) 0.12 0.12 0.117 0.113 0.112 0.108
Ljung-Box (t-3) 0.217 0.215 0.211 0.206 0.205 0.198
Ljung-Box (t-4) 0.269 0.261 0.258 0.257 0.259 0.25
KS 0.318 0.3 0.405 0.36 0.32 0.315
D2 0.894 0.898 0.893 0.894 0.894 0.894
AIC -101.684 -102.243 -101.677 -101.619 -101.495 -101.576
AICc -99.419 -100.041 -99.425 -99.394 -99.243 -99.349
BIC -87.037 -87.813 -87.068 -87.102 -86.89 -87.052
MASE 0.762 0.76 0.768 0.764 0.763 0.768
RMSE 0.323 0.321 0.324 0.323 0.324 0.325
R2 0.913 0.914 0.912 0.913 0.913 0.912
Avg R2 0.894 0.898 0.893 0.894 0.894 0.894
Number of Final Predictors 13 13 13 13 13 13
Maximum Predictors in Lasso 8 8 8 8 8 8
Dimension Reduction Rate 10% 10% 10% 10% 10% 10%
Number of Bootstrap Blocks 7 2 4 8 10 12
Bootstrap Sample Size 1,000 1,000 1,000 1,000 1,000 1,000
Computation Time 1.67 mins 1.4 mins 1.37 mins 1.37 mins 1.18 mins 1.62 mins

Panel B: With Dimensionality Reduction
Ljung-Box (t-1) 0.05 0.049 0.047 0.045 0.046 0.044
Ljung-Box (t-2) 0.12 0.118 0.116 0.111 0.113 0.11
Ljung-Box (t-3) 0.218 0.212 0.21 0.204 0.207 0.201
Ljung-Box (t-4) 0.269 0.256 0.256 0.251 0.257 0.249
KS 0.306 0.271 0.395 0.367 0.308 0.307
D2 0.893 0.897 0.892 0.893 0.894 0.894
AIC -101.626 -102.254 -101.638 -101.615 -101.545 -101.576
AICc -99.376 -100.06 -99.391 -99.396 -99.298 -99.352
BIC -87.031 -87.86 -87.052 -87.122 -86.962 -87.065
MASE 0.763 0.759 0.767 0.764 0.762 0.767
RMSE 0.323 0.321 0.324 0.323 0.324 0.325
R2 0.913 0.914 0.912 0.913 0.913 0.912
Avg R2 0.893 0.897 0.892 0.893 0.894 0.894
Number of Final Predictors 12 12 12 12 12 12
Maximum Predictors in Lasso 8 8 8 8 8 8
Dimension Reduction Rate 10% 10% 10% 10% 10% 10%
Number of Bootstrap Blocks 7 2 4 8 10 12
Bootstrap Sample Size 1,000 1,000 1,000 1,000 1,000 1,000
Computation Time 1.67 mins 1.4 mins 1.37 mins 1.37 mins 1.18 mins 1.62 mins

Notes: Number of bootstrap blocks varies between 2 to 12.
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Table C.2: Coefficient and appearance performance across different numbers of bootstrap
blocks.

Benchmark
Simulation

Simulation
1

Simulation
2

Simulation
3

Simulation
4

Simulation
5

Variable A. C. % A. C. % A. C. % A. C. % A. C. % A. C. %
Intercept 4.075 100.0 4.023 100.0 4.055 100.0 4.030 100.0 4.022 100.0 4.043 100.0
PDt−1 0.619 100.0 0.627 100.0 0.619 100.0 0.620 100.0 0.620 100.0 0.621 100.0
DI -0.062 100.0 -0.060 100.0 -0.061 100.0 -0.061 100.0 -0.061 100.0 -0.061 100.0
CPI 0.032 15.0 0.026 11.2 0.026 15.1 0.028 13.7 0.029 15.7 0.027 14.5
CCI -0.002 81.3 -0.002 82.6 -0.002 80.0 -0.002 79.7 -0.002 79.8 -0.002 79.8
CAR -0.008 10.6 -0.008 11.8 -0.010 10.9 -0.011 10.8 -0.008 11.5 -0.012 12.1
HDtI 0.006 36.0 0.006 35.5 0.006 37.2 0.007 35.8 0.006 33.2 0.006 36.2
GD 0.005 48.9 0.005 46.7 0.005 50.8 0.006 49.9 0.005 50.2 0.005 52.3
TD 0.012 100.0 0.012 100.0 0.012 100.0 0.012 99.9 0.012 100.0 0.012 100.0
Loans 0.007 28.7 0.007 28.7 0.007 29.6 0.008 29.5 0.007 29.6 0.007 25.7
GDP -0.012 77.2 -0.013 70.8 -0.013 72.7 -0.013 73.4 -0.012 75.9 -0.012 71.5
NSFR 0.337 8.3 0.476 7.8 0.337 7.2 0.414 7.3 0.495 8.1 0.399 7.7
HHI -9.243 99.0 -9.119 99.5 -9.107 99.7 -9.110 98.8 -9.091 99.0 -9.070 99.3
Notes: A. C. = Average Coefficient; % = Number of Appearances as a percentage of total simulations.
Other variables are as previously described.
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C.3 Balance sheets accounts and granular data

Table C.3: Balance sheets accounts and macroeconomic variables.

Variable Composition Description
Dependent Variable

Adjusted Total Assets
(+)[10000007] Current Assets and Long Term Receivables
(+)[20000004] Fixed Assets
(+)[49908008] Creditor for Advanced Residual Value

Total Liabilities

(+)[40000008] Current and Long Term Liabilities
(+)[50000005] Deferred Income
(+)[60000002] Equity
(+)[70000009] Gross Revenues
(+)[80000006] Gross Expenses

Demand Deposits (+)[41100000] Demand Deposits
Saving Deposits (+)[41200003] Saving Deposits
Time Deposits (+)[41500002] Time Deposits

Independent Variable

Interest Rate 4389 Interest rate
CDI in annual terms (basis 252)

Broad National Consumer
Price Index 13522 Broad National Consumer

Price Index (IPCA) in 12 months
Consumer Confidence Index 4393 Consumer confidence index

Capital Adequacy Ratio 21424 Regulatory Capital to
Risk-Weighted Assets

Household Debt to Income 29037 Household debt to income
(Households gross disposable national income)

Net Public Debt 4503 Net public debt (% GDP) - Total
Federal Government and Central Bank

Total Deposits
27790
27805
1835

Demand + Time + Savings deposits
(end-of-period balance)

Credit Operations Outstanding 20539 Total Credit operations outstanding

Gross Domestic Product
at Market Prices 6561

Gross Domestic Product at Market Prices -
Quarterly Rate (compared to the same
period of the previous year) - Table 5932

Notes: The numbers in the composition column for the dependent variables correspond to the
Cosif balance sheet information, which is the accounting framework for all financial institutions
in the Brazilian financial market. The numbers for the independent variables in this same column
are based on the codes of macroeconomic variables from BCB (2023b), except for GDP, which
comes from IBGE (2023). For additional information on Cosif balance sheet data, refer to BCB
(2023a).
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